Science, asked by thapaavinitika6765, 9 months ago

Integrate :\int \:e^x\cos \left(x\right)dx

Answers

Answered by Anonymous
1

\int \:e^x\cos \left(x\right)dx=\frac{e^x\sin \left(x\right)}{2}+\frac{e^x\cos \left(x\right)}{2}+C

\mathrm{Apply\:Integration\:By\:Parts:}\:u=e^x,\:v'=\cos \left(x\right)

u'=\frac{d}{dx}\left(e^x\right)=e^x

v=\int \cos \left(x\right)dx=\sin \left(x\right)

=e^x\sin \left(x\right)-\int \:e^x\sin \left(x\right)dx

\mathrm{Apply\:Integration\:By\:Parts:}\:u=e^x,\:v'=\sin \left(x\right)

=e^x\sin \left(x\right)-\left(-e^x\cos \left(x\right)-\int \:-e^x\cos \left(x\right)dx\right)

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=e^x\sin \left(x\right)-\left(-e^x\cos \left(x\right)-\left(-\int \:e^x\cos \left(x\right)dx\right)\right)

\mathrm{Therefore}

\int \:e^x\cos \left(x\right)dx=e^x\sin \left(x\right)-\left(-e^x\cos \left(x\right)-\left(-\int \:e^x\cos \left(x\right)dx\right)\right)

\mathrm{Isolate}\:\int \:e^x\cos \left(x\right)dx

=\frac{e^x\sin \left(x\right)}{2}+\frac{e^x\cos \left(x\right)}{2}

Add\:a\:constant\:to\:the\:solution

=\frac{e^x\sin \left(x\right)}{2}+\frac{e^x\cos \left(x\right)}{2}+C

Answered by Anonymous
0

Explanation:

Hope it helps You dear....!!

Attachments:
Similar questions