integrate
Answers
To integrate :
As we know that :
Now ,
we use substitution method :
Let ,
Differentiate w.r.t x both sides,
Put the values :
Formula :
To integrate :
\begin{lgathered}\star \: \int \: \frac{1}{ { \cos}^{2} x {(1 - \tan \: x)}^{2} } dx \\\end{lgathered}
⋆∫
cos
2
x(1−tanx)
2
1
dx
As we know that :
\begin{lgathered}\star \boxed{\bold{\frac{1}{ \cos \theta} = \sec \theta}} \\\end{lgathered}
⋆
cosθ
1
=secθ
\begin{lgathered}\implies \: \int \: \frac{ { \sec}^{2} x}{ {(1 - \tan \: x)}^{2} } dx \\\end{lgathered}
⟹∫
(1−tanx)
2
sec
2
x
dx
Now ,
we use substitution method :
Let ,
\star \: 1 - \tan \: x = t⋆1−tanx=t
Differentiate w.r.t x both sides,
\begin{lgathered}\star \: - { \sec}^{2} x = \frac{dt}{dx} \\ \\ \star \: dx = \frac{dt}{ - { \sec}^{2} x}\end{lgathered}
⋆−sec
2
x=
dx
dt
⋆dx=
−sec
2
x
dt
Put the values :
\begin{lgathered}\implies \int \: \frac{ { \sec}^{2}x }{ {t}^{2} } \frac{dt}{ - { \sec}^{2}x } dx \\ \\ \implies - \int \: {t}^{ - 2} dt \\ \ \\ \implies \: - ( \frac{ { t}^{ - 2 + 1} }{ - 2 + 1} ) + c \\ \\ \implies \: \frac{1}{t} + c \\ \\ \implies \: \frac{1}{1 - \tan \: x} + c\end{lgathered}
⟹∫
t
2
sec
2
x
−sec
2
x
dt
dx
⟹−∫t
−2
dt
⟹−(
−2+1
t
−2+1
)+c
⟹
t
1
+c
⟹
1−tanx
1
+c
Formula :
\begin{lgathered}\star \bold{ \red{ \frac{d}{dx} \tan \: x \: = { \sec}^{2} x}} \\ \\ \star \bold{ \red{ \int \: {x}^{n} dx = \frac{ {x}^{n + 1} }{n + 1 } + c}} \:\end{lgathered}
⋆
dx
d
tanx=sec
2
x
⋆∫x
n
dx=
n+1
x
n+1
+c