Math, asked by Anonymous, 5 months ago

Integrate

 \sf \int \:  \dfrac{2 {t}^{2} }{ {t}^{2}  + t - 2} dt \\

Answers

Answered by Asterinn
17

[ Kindly refer attached picture for stepwise solution and answer ]

Additional-Information :

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}

Learn more :

d(x^n)/dx = n x^(n-1)

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

d(e^x)/dx = e^x

d(ln x)/dx = 1/x

Attachments:

Shubhendu8898: Well Done
BrainlyIAS: Nice :-)
Answered by amansharma264
10

EXPLANATION.

 \sf \:  \implies \:  \int \:  \dfrac{2 {t}^{2} }{ {t}^{2}  + t - 2} dt \\  \\ \sf \:  \implies \:  \int \:  \frac{2 {t}^{2}dt }{ {t}^{2} + t - 2 } \\  \\ \sf \:  \implies \: taking \: 2 \: as \: common \: we \: get \\  \\  \sf \:  \implies \: 2 \int \:  \frac{ {t}^{2}  + t - 2 - t + 2}{ {t}^{2}  + t - 2} dt

\sf \:  \implies \: 2 \int \:  \dfrac{ {t}^{2}  + t - 2}{ {t}^{2}  +  t - 2} dt \:  \:  +  \:  2\int \:  \dfrac{( - t + 2)}{ {t}^{2}  + t - 2} dt \\  \\ \sf \:  \implies \: 2 \int \: dt \:  +  \: 2 \int \:  \frac{( - t + 2)}{ {t}^{2}  + t - 2} dt \\  \\ \sf \:  \implies \: solve \: by \: partial \: fraction \: we \: get \\  \\ \sf \:  \implies \:  \frac{( - t + 2)}{ {t}^{2}  + t - 2}  =  \frac{a}{(t +2)}  +  \frac{b}{(t - 1)}

\sf \:  \implies \:  \dfrac{( - t + 2)}{(t + 2)(t - 1)}  =  \dfrac{a(t - 1) + b(t + 2)}{(t + 2)(t - 1)} \\  \\  \sf \:  \implies \:  - t + 2 = a(t - 1) + b(t + 2) \\  \\ \sf \:  \implies \: put \: t \:  = 1 \: we \: get \\  \\ \sf \:  \implies \: 1 = 3b \\  \\ \sf \:  \implies \: b \:  =  \frac{1}{3}

\sf \:  \implies \: put \: t \:  =  - 2 \: we \: get \\  \\ \sf \:  \implies \: 4 =  - 3a \\  \\ \sf \:  \implies \: a \:  =  \frac{ - 4}{3} \\  \\ \sf \:  \implies \: put \: the \: value \:  of \: a \: and \: b \: in \: equation

\sf \:  \implies \: 2 \int \: dt \:  +  \int \:  \dfrac{  \dfrac{ - 4}{3} dt}{(t + 2)}  \:  +  \:  \int \:  \dfrac{ \dfrac{1}{3}dt }{(t - 1)}  \\  \\ \sf \:  \implies \: 2[ t \:  -  \frac{4}{3} ln(t + 2)   +  \frac{1}{3}   ln(t - 1) ]+ c


BrainlyIAS: Nice :-)
amansharma264: Thanku
Similar questions