Math, asked by PratikSwani, 1 month ago

integrate the example given in image.​

Attachments:

Answers

Answered by mathdude500
3

Given Question

Evaluate the following integral

\displaystyle\int\rm\bigg[1 - \dfrac{x}{1!} + \dfrac{ {x}^{2} }{2!}  +  -  -  -  \infty  \bigg] {e}^{2x}  \: dx

 \green{\large\underline{\sf{Solution-}}}

Given integral is

\displaystyle\int\rm\bigg[1 - \dfrac{x}{1!} + \dfrac{ {x}^{2} }{2!}  +  -  -  -  \infty  \bigg] {e}^{2x}  \: dx

We know,

From exponential series

\boxed{ \tt{ \: {e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!}  + \dfrac{ {x}^{3} }{3!}  +  -  -  -  \infty  \: }}

So,

On replacing x by (- x), we get

\boxed{ \tt{ \: {e}^{ - x} = 1  -  x + \dfrac{ {x}^{2} }{2!}  -  \dfrac{ {x}^{3} }{3!}  +  -  -  -  \infty  \: }}

So, given integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm \: {e}^{ - x} \times {e}^{2x} \: dx

\rm \:  =  \: \displaystyle\int\rm \:  {e}^{ - x + 2x} \: dx

\rm \:  =  \: \displaystyle\int\rm \:  {e}^{x} \: dx

\rm \:  =  \:  {e}^{x} + c

Therefore

\boxed{ \tt{ \: \displaystyle\int\rm\bigg[1 - \dfrac{x}{1!} + \dfrac{ {x}^{2} }{2!}  +  -  -  -  \infty  \bigg] {e}^{2x}  \: dx \:  =  \: {e}^{x} \:  +  \: c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions