Math, asked by theyogeshwaran007, 6 months ago

integrate the following

Attachments:

Answers

Answered by Anonymous
25

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹</p><p> \frac{1}{3} x - 4 = x  - ( \frac{1}{2}  +  \frac{x}{3} )

⟹</p><p> \frac{x}{3}  - 4 = x - ( \frac{3 + 2x}{6} )

⟹</p><p> \frac{x - 12}{3}  = x - ( \frac{2x + 3}{6} )

⟹</p><p> \frac{x - 12}{3}  = x -  \frac{2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{6x - 2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{4x - 3}{6}

cancelling 6( R.H.S) By 3 From L.H.S

⟹ \frac{x - 12}{1}  =  \frac{4x  - 3}{2} </p><p>

⟹</p><p>2(x - 12) = 4x - 3

⟹</p><p>2x - 24 = 4x - 3

⟹</p><p> - 24 + 3 = 4x - 2x

⟹</p><p> - 21 = 2x

⟹</p><p>x =  -  \frac{21}{2}

CHECK:-

⟹ \frac{  - \frac{21}{2} }{3}  - 4 =   - \frac{21}{2}  - ( \frac{1}{2}  + ( - ) \frac{ \frac{21}{2} }{3} )</p><p>

⟹</p><p> -  \frac{21}{6}  - 4 =  -  \frac{21}{2}  - ( \frac{1}{2}  -  \frac{21}{6} )

⟹</p><p>  - \frac{7}{2}  - 4 =   - \frac{21}{2} - ( \frac{1}{2}   -  \frac{7}{2} )

⟹</p><p> \frac{ - 7 - 8}{2}  = -   \frac{21}{2}  - ( -  \frac{6}{2} )

⟹ -  \frac{15}{2}  =  -  \frac{21}{2} - ( - 3) </p><p>

⟹</p><p>  - \frac{15}{2}  =  -  \frac{21}{2}  + 3

⟹</p><p> -  \frac{15}{2}  =  \frac{ - 21 + 6}{2}  =  -  \frac{15}{2}

THEREFORE,L.H.S=R.H.S

VERIFIED✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
5

Given Integrand,

 \displaystyle \sf y = \int {sin}^{ - 1}  \bigg( \dfrac{2x}{1  +  {x}^{2} }  \bigg)dx

Let x = tan(u).

Differentiating both sides w.r.t u,

 \longrightarrow \sf \:  \dfrac{dx}{du}  =  {sec}^{2} u \\  \\  \longrightarrow \sf \: \: dx =  {sec}^{2} u \: du

Now,

 \implies \:  \sf y =\displaystyle  \int \sf  {sin}^{ - 1}  \bigg( \dfrac{2tan \: u}{1  +  {tan}^{2}u }  \bigg)dx \\  \\ \implies \:  \sf y =\displaystyle  \sf \int {sin}^{ - 1}  \bigg( \dfrac{2tan \: u}{1  +  {tan}^{2}u }  \bigg) \: sec {}^{2}u du \\  \\ \implies \displaystyle   \sf y =  \int {sin}^{ - 1}  \bigg(  sin2u  \bigg) \: sec {}^{2}u du \\  \\  \implies \displaystyle   \sf y =  2\int u \: sec {}^{2}u du

Integrating by parts,

 \implies \displaystyle \sf \: y = 2u \int  {sec}^{2} u \: du  -  2 \int \bigg \{  \dfrac{du}{du}  \int \sec {}^{2}u \: du \bigg \} \: du

We know that,

 \star \:  \displaystyle \boxed{ \boxed{ \sf \int sec {}^{2} a \: da = tan \: a + c}}

Now,

 \implies \displaystyle \sf \: y = 2u  \: tan(u)   -  2 \int tan \: u \: du

Also,

 \star \:  \displaystyle \boxed{ \boxed{ \sf \int tan \: a \: da = log(sec \: a)  + c}}

Thus,

 \implies \displaystyle \sf \: y = 2u  \: tan(u)   -  2 log |sec(u)|  + c

Substituting u = arctan(x),

 \implies \boxed{ \boxed{ \displaystyle \sf \: y = 2x  \: tan {}^{ - 1} (x)   -  2 log |sec(tan {}^{ - 1}x )|  + c}}

Similar questions