Physics, asked by ram683828, 6 months ago

INTEGRATE THE FOLLOWING

Attachments:

Answers

Answered by kaushik05
9

To Integrate :

 \star \:  \sqrt{ \frac{1 +  \sin \: x}{1 -  \sin \: x} }  \\  \\

Here,

Rationalise the denominator ,we get :

  \implies \:  \sqrt{\frac{1 +  \sin \: x}{1  -  \sin \: x}  \times  \frac{1   +  \sin \: x}{1  +  \sin \: x} } \\   \\  \implies \:   \sqrt{ \frac{ {(1 +  \sin \: x)}^{2} }{ {1}^{2}  -  { \sin}^{2}x }}  \\  \\  \implies \:  \sqrt{ \frac{ {(1 +  \sin \: x)}^{2} }{ { \cos}^{2} x} }  \\  \\  \implies \:  \frac{1 +  \sin \: x}{ \cos \:x}  \\  \\  \implies \:  \frac{1}{ \cos \: x}  +  \frac{ \sin \: x}{ \cos \: x}  \\  \\  \implies \: \sec \: x +  \tan \: x

Now , integrate

 \implies \int \:  (\sec \: x +  \tan \: x) \: dx \\  \\  \implies \:   \log( \sec \: x \:  +  \tan \: x)  +  \log( \sec \: x)  + c

Formula used:

 \star \bold{ \int \:  \tan \: x \: dx \:  =  log(  \sec \: x)  + c} \\  \\  \star \bold{ \int \:  \sec \: x \: dx =  log( \sec \: x +  \tan \: x) }

Answered by Anonymous
180

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{\int \sqrt{\dfrac{1+sinx}{1-sinx}}dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \sqrt{\dfrac{1+\sin \left(x\right)}{1-\sin \left(x\right)}}dx=2\ln \left|-1+\tan \left(\dfrac{x}{2}\right)\right|-\ln \left(\sec ^2\left(\dfrac{x}{2}\right)\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Apply } u-\text { substitution: } u=\tan \left(\dfrac{x}{2}\right)

=\int \dfrac{2\left(u+1\right)}{\left(u-1\right)\left(1+u^2\right)}du

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \int \dfrac{u+1}{\left(u-1\right)\left(1+u^2\right)}du

\text { Take the partial fraction of } \dfrac{u+1}{(u-1)\left(1+u^{2}\right)}: \quad \dfrac{1}{u-1}-\dfrac{u}{u^{2}+1}

=2\cdot \int \dfrac{1}{u-1}-\dfrac{u}{u^2+1}du

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=2\left(\int \dfrac{1}{u-1}du-\int \dfrac{u}{u^2+1}du\right)

\begin{array}{l}\int \dfrac{1}{u-1} d u=\ln |u-1| \\\\\int \dfrac{u}{u^{2}+1} d u=\dfrac{1}{2} \ln \left|u^{2}+1\right|\end{array}

=2\left(\ln \left|u-1\right|-\dfrac{1}{2}\ln \left|u^2+1\right|\right)

\mathrm{Substitute\:back}\:u=\tan \left(\dfrac{x}{2}\right)

=2\left(\ln \left|\tan \left(\dfrac{x}{2}\right)-1\right|-\dfrac{1}{2}\ln \left|\tan ^2\left(\dfrac{x}{2}\right)+1\right|\right)

\text { Simplify } 2\left(\ln \left|\tan \left(\dfrac{x}{2}\right)-1\right|-\frac{1}{2} \ln \left|\tan ^{2}\left(\dfrac{x}{2}\right)+1\right|\right): \quad 2 \ln \left|-1+\tan \left(\dfrac{x}{2}\right)\right|-\ln \left(\sec ^{2}\left(\dfrac{x}{2}\right)\right)

=2\ln \left|-1+\tan \left(\dfrac{x}{2}\right)\right|-\ln \left(\sec ^2\left(\dfrac{x}{2}\right)\right)

\mathrm{Add\:a\:constant\:to\:the\:solution}

\boxed{\sf{=2\ln \left|-1+\tan \left(\dfrac{x}{2}\right)\right|-\ln \left(\sec ^2\left(\dfrac{x}{2}\right)\right)+C}}

Similar questions