Math, asked by sindhu3383, 24 days ago

integrate the following:
(2t -4)^-4 dt = please give detailed answer​

Answers

Answered by TrustedAnswerer19
71

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

First we will expand it !

(2t - 4)^4 \\  =  {(2t)}^{4}  +  \: ^4C_1 \:  {(2t)}^{4 - 1}  \times ( - 4)^{1}  + \: ^4C_2 \:  {(2t)}^{4 - 2}  \times ( - 4)^{2}   + \: ^4C_3\:  {(2t)}^{4 - 3}  \times ( - 4)^{3}   +  {( - 4)}^{4}  \\  = 16 {t}^{4}  - 128 {t}^{3}  + 384 {t}^{2}  - 512 {t} + 256

Now,

 \displaystyle \int \:  {(2t - 4)}^{4}  \: dt \\  =  \int \: (16 {t}^{4}  - 128 {t}^{3}  + 384 {t}^{2}  - 512 {t} + 256) \: dt \\  =  \int \: 16 {t}^{4}  \: dt - \int 128 {t}^{3}  \: dt +  \int \: 384 {t}^{2}  \: dt -  \int \: 512 {t}  \: dt+ \int \:  256 \: dt \\  = 16 \times   \frac{ {t}^{5} }{5}  - 128 \times  \frac{ {t}^{4} }{4}  + 384 \times  \frac{ {t}^{3} }{3}  - 512 \times  \frac{ {t}^{2} }{2}  + 256t \:+\:c\\ =   \frac{16 {t}^{5} }{5}  - 32 {t}^{4}  + 128 {t}^{3}  - 256 {t}^{2}  + 256t\:+\:c

Similar questions