Math, asked by ayushchauhan846505, 2 months ago

integrate the following ​

Attachments:

Answers

Answered by shadowsabers03
10

Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{x(x^5+3)}

Taking x^5 common from x^5+3 like x^5+3=x^5\left(1+3x^{-5}\right),

\displaystyle\longrightarrow I=\int\dfrac{dx}{x\cdot x^5\left(1+3x^{-5}\right)}

\displaystyle\longrightarrow I=\int\dfrac{dx}{x^6\left(1+3x^{-5}\right)}

\displaystyle\longrightarrow I=\int\dfrac{x^{-6}\ dx}{1+3x^{-5}}\quad\quad\dots(1)

Put,

\displaystyle\longrightarrow u=1+3x^{-5}

\displaystyle\longrightarrow du=-15x^{-6}\ dx

\displaystyle\longrightarrow x^{-6}\ dx=-\dfrac{1}{15}\,du

Then (1) becomes,

\displaystyle\longrightarrow I=-\dfrac{1}{15}\int\dfrac{du}{u}

\displaystyle\longrightarrow I=-\dfrac{1}{15}\log|u|+C

Undoing substitution \displaystyle u=1+3x^{-5},

\displaystyle\longrightarrow I=-\dfrac{1}{15}\log\left|1+3x^{-5}\right|+C

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{15}\log\left|\dfrac{x^5}{x^5+3}\right|+C}}

Similar questions