Math, asked by mudit037180, 15 days ago

integrate the following​

Attachments:

Answers

Answered by krrishgaba
0

Answer:

why why why why

Step-by-step explanation:

why why why

Answered by mathdude500
2

Given Question :-

Integrate the following :-

\rm \: \displaystyle\int\rm \dfrac{ {a}^{6 log_{a}x } - {a}^{4 log_{a}x } }{{a}^{4 log_{a}x } - {a}^{3log_{a}x }}  \: dx \\

 \purple{\large\underline{\sf{Solution-}}}

Given integral is

\rm \: \displaystyle\int\rm \dfrac{ {a}^{6 log_{a}x } - {a}^{4 log_{a}x } }{{a}^{4 log_{a}x } - {a}^{3log_{a}x }}  \: dx \\

We know,

\boxed{ \rm{ \:ylogx \:  =  \: log {x}^{y} \: }} \\

So, using this result, we get

\rm \:  = \displaystyle\int\rm \dfrac{ {a}^{log_{a} {x}^{6} } - {a}^{log_{a} {x}^{4} } }{{a}^{log_{a} {x}^{4} } - {a}^{log_{a} {x}^{3} }}  \: dx \\

We know,

\boxed{ \rm{ \:{a}^{log_{a} {x}^{y} } =  {x}^{y} \: }} \\

So, using this result, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{6} -  {x}^{4} }{ {x}^{4}  -  {x}^{3} } \: dx \\

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{4}({x}^{2} - 1) }{ {x}^{3}(x - 1) } \: dx \\

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}({x}^{2} - 1) }{(x - 1) } \: dx \\

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}(x + 1)(x - 1) }{(x - 1) } \: dx \\

\rm \:  =  \: \displaystyle\int\rm x(x + 1) \: dx \\

\rm \:  =  \: \displaystyle\int\rm ( {x}^{2}  + x) \: dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \:  \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{2} }{2}  + c \\

Hence,

\rm\implies\boxed{ \rm{ \:\displaystyle\int\rm \dfrac{ {a}^{6 log_{a}x } - {a}^{4 log_{a}x } }{{a}^{4 log_{a}x } - {a}^{3log_{a}x }}  \: dx  =  \: \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{2} }{2}  + c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions