Integrate the following function:
Answers
Answered by
0
Solution:
![\int\frac{1}{1+ tan\ x} dx\\ \\ =\int \frac{ {sec}^{2}x }{ {sec}^{2} x(1 + tan \: x)} dx\\ \\\int \frac{ {sec}^{2}x }{ (1 + {tan}^{2} x)(1 + tan \: x)}dx \\ \\ put \: tan \: x = t \\ \\ {sec}^{2} x \: dx = dt \\ \\ = \int\frac{dt}{(1 + {t}^{2} )(1 + t)} \\ \\ \int\frac{1}{1+ tan\ x} dx\\ \\ =\int \frac{ {sec}^{2}x }{ {sec}^{2} x(1 + tan \: x)} dx\\ \\\int \frac{ {sec}^{2}x }{ (1 + {tan}^{2} x)(1 + tan \: x)}dx \\ \\ put \: tan \: x = t \\ \\ {sec}^{2} x \: dx = dt \\ \\ = \int\frac{dt}{(1 + {t}^{2} )(1 + t)} \\ \\](https://tex.z-dn.net/?f=%5Cint%5Cfrac%7B1%7D%7B1%2B+tan%5C+x%7D+dx%5C%5C+%5C%5C+%3D%5Cint+%5Cfrac%7B+%7Bsec%7D%5E%7B2%7Dx+%7D%7B+%7Bsec%7D%5E%7B2%7D+x%281+%2B+tan+%5C%3A+x%29%7D+dx%5C%5C+%5C%5C%5Cint+%5Cfrac%7B+%7Bsec%7D%5E%7B2%7Dx+%7D%7B+%281+%2B+%7Btan%7D%5E%7B2%7D+x%29%281+%2B+tan+%5C%3A+x%29%7Ddx+%5C%5C+%5C%5C+put+%5C%3A+tan+%5C%3A+x+%3D+t+%5C%5C+%5C%5C+%7Bsec%7D%5E%7B2%7D+x+%5C%3A+dx+%3D+dt+%5C%5C+%5C%5C+%3D+%5Cint%5Cfrac%7Bdt%7D%7B%281+%2B+%7Bt%7D%5E%7B2%7D+%29%281+%2B+t%29%7D+%5C%5C+%5C%5C+)
This can be written as
This can be written as
Similar questions