Math, asked by madhav5245, 5 hours ago

Integrate the following function

 \frac{ {e}^{5logx} +  {e}^{4logx}}{{e}^{3logx} + {e}^{2logx}}  \\  \: with \: respect \: to \: x

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {e}^{5logx} + {e}^{4logx} }{{e}^{3logx} + {e}^{2logx}} \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ {e}^{ylogx} \:  =  \:  {x}^{y} \: }}}

So, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{5} +  {x}^{4}  }{ {x}^{3} +  {x}^{2}  } \: dx

\rm \:  =  \: \displaystyle\int\rm   \frac{ {x}^{4} (x + 1)}{ {x}^{2} (x + 1)} \: dx

\rm \:  =  \: \displaystyle\int\rm  {x}^{2}  \: dx

\rm \:  =  \: \dfrac{ {x}^{2 + 1} }{2 + 1}  + c

\rm \:  =  \: \dfrac{ {x}^{3} }{3}  + c

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\int\rm  \frac{ {e}^{5logx} + {e}^{4logx} }{{e}^{3logx} + {e}^{2logx}} \: dx =  \frac{ {x}^{3} }{3}  + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
0

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {e}^{5logx} + {e}^{4logx} }{{e}^{3logx} + {e}^{2logx}} \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ {e}^{ylogx} \:  =  \:  {x}^{y} \: }}}

So, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  <strong>\</strong>frac{ {x}^{5} +  {x}^{4}  }{ {x}^{3} +  {x}^{2}  } \: dx

\rm \:  =  \: \displaystyle\int\rm   \frac{ {x}^{4} (x + 1)}{ {x}^{2} (x + 1)} \: dx

\rm \:  =  \: \displaystyle\int\rm  {x}^{2}  \: dx

\rm \:  =  \: \dfrac{ {x}^{2 + 1} }{2 + 1}  + c

\rm \:  =  \: \dfrac{ {x}^{3} }{3}  + c

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\int\rm  \frac{ {e}^{5logx} + {e}^{4logx} }{{e}^{3logx} + {e}^{2logx}} \: dx =  \frac{ {x}^{3} }{3}  + c}}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions