Math, asked by 12ahujagitansh, 9 hours ago

Integrate the following function

 \int \frac{dx}{x( {x}^{p} + 1) }

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  \frac{1}{x( {x}^{p} + 1) }  \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{x \times  {x}^{p} (1 +  {x}^{ - p}) }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{{x}^{p + 1}  \: (1 +  {x}^{ - p}) }  \: dx

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

\rm \:  \: 1 +  {x}^{ - p} = y

So, on differentiating both sides w. r. t. x, we get

\rm \:  \: 0 - p{x}^{ - p - 1} = \dfrac{dy}{dx}

\rm \:  \:  - p{x}^{ - (p + 1)} = \dfrac{dy}{dx}

\rm\implies \:\dfrac{dx}{ {x}^{p + 1} }  =  - \dfrac{dy}{p}

So, on substituting these values in above integral, we get

\rm \:  =  \: -  \:  \dfrac{1}{p}\displaystyle\int\rm  \frac{dy}{y}

\rm \:  =  \: -  \:  \dfrac{1}{p} \: log |y|  + c

\rm \:  =  \: -  \:  \dfrac{1}{p} \: log |1 +  {x}^{ - p} |  + c

\rm \:  =  \: -  \:  \dfrac{1}{p} \: log \bigg|1 +  \dfrac{1}{ {x}^{p} }  \bigg|  + c

\rm \:  =  \: -  \:  \dfrac{1}{p} \: log \bigg|\dfrac{ {x}^{p}  + 1}{ {x}^{p} }  \bigg|  + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Anonymous
3

Step-by-step explanation:

Given

 \sf\int \dfrac{dx}{x( {x}^{p} + 1) }

Solution

Refer To Attachment!!!

Attachments:
Similar questions