Math, asked by devansh9257, 9 days ago

Integrate the following function

 \int \:  \frac{tanx}{ {a}^{2}  +  {b}^{2}  {tan}^{2} x}  \: dx

Please explain step by step.​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{tanx}{ {a}^{2}  +  {b}^{2}  {tan}^{2} x} \: dx

can be rewritten as

 \rm \:  =  \: \displaystyle\int\rm  \frac{ \dfrac{sinx}{cosx} }{ {a}^{2} +  {b}^{2} \dfrac{ {sin}^{2} x}{ {cos}^{2} x}} dx \\

 \rm \:  =  \: \displaystyle\int\rm  \frac{ \dfrac{sinx}{cosx} }{ \dfrac{ {a}^{2}  {cos}^{2}x +  {b}^{2}  {sin}^{2} x}{ {cos}^{2} x}}dx \:  \\

 \rm \:  =  \: \displaystyle\int\rm  \frac{sinx \: cosx}{ {a}^{2}  {cos}^{2}x +  {b}^{2} {sin}^{2}x} \: dx

Now, to evaluate this integral further, we use Method of Substitution.

So, Substitute

\purple{\rm :\longmapsto\: {a}^{2} {cos}^{2}x +  {b}^{2} {sin}^{2}x = y}

\purple{\rm :\longmapsto\: [ - {a}^{2}(2cosx \: sinx) +  {b}^{2}(2sinx \: cosx)] \: dx \:  =  \: dy}

\purple{\rm :\longmapsto\:sinxcosx[ {2b}^{2} -  {2a}^{2}] \: dx \:  =  \: dy}

\purple{\rm :\longmapsto\:sinxcosx \: dx \:  =  \: \dfrac{dy}{2( {b}^{2} -  {a}^{2})} }

So, on substituting all these values, we get

 \rm \:  =  \: \dfrac{1}{2( {b}^{2} -  {a}^{2})} \displaystyle\int\rm  \frac{dy}{y}

 \rm \:  =  \: \dfrac{1}{2( {b}^{2} -  {a}^{2})} log |y|   + c

 \rm \:  =  \: \dfrac{1}{2( {b}^{2} -  {a}^{2})} log \bigg| {a}^{2} {cos}^{2}x +  {b}^{2} {sin}^{2}x\bigg|   + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \dfrac{d}{dx}sinx = cosx}} \\

\boxed{\tt{ \dfrac{d}{dx}cosx =  - sinx}} \\

\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  =   {nx}^{n - 1} }} \\

\boxed{\tt{  \int \:  \frac{1}{x} \: dx \:  =  \: log |x|  + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions