Math, asked by papafairy143, 5 hours ago

Integrate the following function with respect to x

 {4}^{ log_{2}(x) }

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \:  {4}^{ log_{2}(x) } \: dx

\rm \:  =  \: \displaystyle\int\rm  \:  {2}^{ 2log_{2}(x) } \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  y \: logx \:  =  \: log {x}^{y} \: }}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\int\rm  \:  {2}^{log_{2}( {x}^{2} ) } \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {a}^{ log_{a}(x) } = x \: }}} \\

So, using this identity, we get

\rm \:  =  \: \displaystyle\int\rm  {x}^{2}  \: dx

\rm \:  =  \: \dfrac{ {x}^{2 + 1} }{2 + 1}  + c

\rm \:  =  \: \dfrac{ {x}^{3} }{3}  + c

Hence,

 \\ \purple{\rm\implies \:\boxed{\tt{ \displaystyle\int\rm  \:  {4}^{ log_{2}(x) } \: dx =  \frac{ {x}^{3} }{3}  + c}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions