Math, asked by aryan021212, 13 hours ago

integrate the following function with respect to x

 \dfrac{1}{x +  \sqrt{x} }

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{x +  \sqrt{x} }

To evaluate this integral, we use Method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\: \sqrt{x} = y}

 \purple{\rm :\longmapsto\:x =  {y}^{2}}

 \purple{\rm :\longmapsto\:dx =  2y \: dy}

So, on substituting all these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{2y}{ {y}^{2}  + y} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{2y}{y(y + 1)} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{2}{y + 1} \: dy

\rm \:  =  \: 2log |y + 1| + c

\rm \:  =  \: 2log | \sqrt{x}  + 1| + c

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{x +  \sqrt{x} } = 2log | \sqrt{x} + 1| + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{x +  \sqrt{x} }

To evaluate this integral, we use Method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\: \sqrt{x} = y}

 \purple{\rm :\longmapsto\:x =  {y}^{2}}

 \purple{\rm :\longmapsto\:dx =  2y \: dy}

So, on substituting all these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{2y}{ {y}^{2}  + y} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{2y}{y(y + 1)} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{2}{y + 1} \: dy

\rm \:  =  \: 2log |y + 1| + c

\rm \:  =  \: 2log | \sqrt{x}  + 1| + c

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{x +  \sqrt{x} } = 2log | \sqrt{x} + 1| + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions