Math, asked by khushi15686, 21 days ago

Integrate the following function with respect to x

 \frac{ {x}^{4} + 1 }{ {x}^{2} + 1 }  \\

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

\rm \: \displaystyle\int\rm  \frac{ {x}^{4}  + 1}{ {x}^{2}  + 1} \: dx \\

can be rewritten as

\rm \:=  \: \displaystyle\int\rm  \frac{ {x}^{4}  - 1 + 1 + 1}{ {x}^{2}  + 1} \: dx \\

\rm \:=  \: \displaystyle\int\rm  \frac{ {x}^{4}  - 1 +2}{ {x}^{2}  + 1} \: dx \\

\rm \:=  \: \displaystyle\int\rm  \frac{ {x}^{4}  - 1}{ {x}^{2}  + 1} \: dx + 2\displaystyle\int\rm  \frac{1}{ {x}^{2}  + 1} \: dx\\

We know,

\boxed{\rm{  \:\displaystyle\int\rm  \frac{dx}{ {x}^{2} + 1 }  =  {tan}^{ - 1}x + c \:  \: }} \\

So, using this result, we get

\rm \:=  \: \displaystyle\int\rm  \frac{ {( {x}^{2}) }^{2}  - 1}{ {x}^{2}  + 1} \: dx +  2{tan}^{ - 1} x \\

\rm \:=  \: \displaystyle\int\rm  \frac{( {x}^{2}  - 1)( {x}^{2}  + 1)}{ {x}^{2}  + 1} \: dx +  2{tan}^{ - 1} x \\

\rm \:=  \: \displaystyle\int\rm  ( {x}^{2} - 1) \: dx +  2{tan}^{ - 1} x \\

We know,

\boxed{\rm{  \:\displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \:  \: }} \\

So, using this, we get

\rm \: =  \:\dfrac{ {x}^{3} }{3} - x +  2{tan}^{ - 1}x + c \\

Hence,

\boxed{\rm{  \:\rm \:\displaystyle\int\rm  \frac{ {x}^{4}  + 1}{ {x}^{2}  + 1} \: dx  =  \:\dfrac{ {x}^{3} }{3} - x + 2 {tan}^{ - 1}x + c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by phelper27
30

  • please check the attached file
Attachments:
Similar questions