Math, asked by madhav5245, 6 hours ago

Integrate the following function with respect to x

 \sqrt{1 - sin2x}  \: when \: x \:  \in \: (0 \: to \:  \frac{\pi}{4})

Don't spam.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\: \: \displaystyle\int\rm  \sqrt{1 - sin2x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \sqrt{1 - 2sinx \: cosx} \: dx

can be further rewritten as

\rm \:  =  \: \displaystyle\int\rm  \sqrt{ {sin}^{2}x +  {cos}^{2}x - 2sinx \: cosx} \: dx

\rm \:  =  \: \displaystyle\int\rm  \sqrt{ {(sinx - cosx)}^{2} } \: dx

\rm \:  =  \: \displaystyle\int\rm  |sinx - cosx| \: dx

Now, We know, By definition of Modulus function

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{ - x \: when \: x < 0} \\  \\ &\sf{ \:  \: x \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Now,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |sinx - cosx| =  \begin{cases} &\sf{ - (sinx - cosx) \: when \: 0 < x <  \dfrac{\pi}{4} } \\  \\ &\sf{ \:  \: sinx - cosx \: when \: \dfrac{\pi}{4}  \leqslant  x  < \dfrac{\pi}{2}} \end{cases}\end{gathered}\end{gathered}

So, using this, we can rewrite the above integral as

\rm \:  =  \: \displaystyle\int\rm  - (sinx - cosx) \: dx

\rm \:  =  \: \displaystyle\int\rm (cosx - sinx) \: dx

\rm \:  =  \: sinx + cosx + c

Hence,

\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\int\rm  \sqrt{1 - sin2x}dx  =  \: sinx + cosx + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions