Math, asked by skesar512, 1 month ago

Integrate the following
(i) sec2 (3x + 7)​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ ∫sec²(3x + 7)dx.

As we know that,

By using the substitution method, we get.

Let we assume that,

⇒ 3x + 7 = t.

Differentiate w.r.t x, we get.

⇒ 3dx = dt.

⇒ dx = dt/3.

Put the value in the equation, we get.

⇒ ∫sec²(t)dt/3.

⇒ 1/3∫sec²tdt.

⇒ 1/3 tan(t) + C.

Put the value of t = 3x + 7 in the equation, we get.

⇒ 1/3 tan(3x + 7) + C.

                                                                                                                       

MORE INFORMATION.

Standard integrals.

(1) = ∫sin x dx = - cos x + c.

(2) = ∫cos x dx = sin x + c.

(3) = ∫tan x dx = ㏒(sec x) + c.

(4) = ∫cot x dx = ㏒(sin x) + c.

(5) = ∫sec x dx = ㏒(sec x + tan x) + c. = - ㏒(sec x - tan x) + c. = ㏒ tan(π/4 + x/2) + c.

(6) = ∫cosec x dx = - ㏒(cosec x + cot x) + c. = ㏒(cosec x - cot x) + c = ㏒ tan(x/2) + c.

(7) = ∫sec x tan x dx = sec x + c.

(8) = ∫cosec x cot x dx = - cosec x + c.

(9) = ∫sec²xdx = tan x + c.

(10) = ∫cosec²xdx = - cot x + c.

Answered by Kashimoni
1

⇒ ∫sec²(3x + 7)dx.

As we know that,

By using the substitution method, we get.

Let we assume that,

⇒ 3x + 7 = t.

Differentiate w.r.t x, we get.

⇒ 3dx = dt.

⇒ dx = dt/3.

Put the value in the equation, we get.

⇒ ∫sec²(t)dt/3.

⇒ 1/3∫sec²tdt.

⇒ 1/3 tan(t) + C.

Put the value of t = 3x + 7 in the equation, we get.

⇒ 1/3 tan(3x + 7) + C.

Similar questions