Math, asked by sindhu3383, 6 hours ago

Integrate the following:
int(2t -4)^4 dt = please give detailed answer​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int(2t - 4)^{4} dt \\

  = \int \{ (2t)^{4} - (2t)^{3}(4)  + (2t)^{2}  {(4)}^{2} - (2t) {(4)}^{3}   +  {(4)}^{4}  \} dt \\

  = \int \{16 (t)^{4} - 32(t)^{3}  + 64(t)^{2}  - 128(t)   + 256  \} dt \\

  = \int 16 (t)^{4} dt-  \int32(t)^{3}dt  +  \int64(t)^{2}dt  - \int 128(t) dt  +  \int256  dt \\

  =16 \int (t)^{4} dt- 32 \int(t)^{3}dt  +  64\int(t)^{2}dt  - 128\int (t) dt  + 256 \int  dt \\

  =16 \frac{t^{5}}{5} - 32 \frac{t^{4}}{4}  +  64\frac{t^{3}}{3}  - 128\frac{( {t}^{2} }{2}  + 256t + C \\

  = \frac{16}{5}  {t}^{5} - \frac{32}{4} t^{4}+  \frac{64}{3} t^{3}- \frac{ 128 }{2}{t}^{2} + 256t + C \\

  = \frac{16}{5}  {t}^{5} - 8 t^{4}+  \frac{64}{3} t^{3}-  64{t}^{2} + 256t + C \\

Similar questions