Integrate the following problem:
P.S:
Have fun!
Answers
We're asked to evaluate the integral,
As per ILATE rule, it's taken as,
Performing integration by parts,
Again performing integration by parts,
From (1),
Answer:
We're asked to evaluate the integrate,
\displaystyle\longrightarrow I=\int e^{-x}\cos(2x)\ dx⟶I=∫e
−x
cos(2x) dx
As per ILATE rule, it's taken as,
\displaystyle\longrightarrow I=\int\cos(2x)\cdot e^{-x}\ dx\quad\quad\dots(1)⟶I=∫cos(2x)⋅e
−x
dx…(1)
Performing integrating by parts,
\displaystyle\longrightarrow I=-e^{-x}\cos(2x)-2\int\sin(2x)\cdot e^{-x}\ dx⟶I=−e
−x
cos(2x)−2∫sin(2x)⋅e
−x
dx
Again performing integrating by parts,
\displaystyle\longrightarrow I=-e^{-x}\cos(2x)-2\left[-e^{-x}\sin(2x)+2\int\cos(2x)\cdot e^{-x}\ dx\right]⟶I=−e
−x
cos(2x)−2[−e
−x
sin(2x)+2∫cos(2x)⋅e
−x
dx]
\displaystyle\longrightarrow I=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)-4\int\cos(2x)\cdot e^{-x}\ dx⟶I=−e
−x
cos(2x)+2e
−x
sin(2x)−4∫cos(2x)⋅e
−x
dx
From (1),
\displaystyle\longrightarrow I=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)-4I⟶I=−e
−x
cos(2x)+2e
−x
sin(2x)−4I
\displaystyle\longrightarrow 5I=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)⟶5I=−e
−x
cos(2x)+2e
−x
sin(2x)
\displaystyle\longrightarrow\underline{\underline{I=\dfrac{e^{-x}\left(2\sin(2x)-\cos(2x)\right)}{5}(+C)}}⟶
I=
5
e
−x
(2sin(2x)−cos(2x))
(+C)