Math, asked by aayushigupta2107, 8 months ago

Integrate the following question

Attachments:

Answers

Answered by Asterinn
2

 \implies\displaystyle \int {e^{x}}(  {\tan}^{ - 1} (x)  +  \dfrac{1}{1 +  {x}^{2} }) dx

We know that :-

\displaystyle \int {e^{x}}( f(x) +  \frac{d(f(x))}{dx} )  \: dx = {e^{x}} f(x) + c

Now we will use tye above Concept to integrate the given expression.

\implies\displaystyle \int {e^{x}}(  {\tan}^{ - 1} (x)  +  \dfrac{1}{1 +  {x}^{2} }) dx

Here  \:  \: f(x) = {\tan}^{ - 1} (x)

 \dfrac{d({\tan}^{ - 1} (x))}{dx}   =\dfrac{1}{1 +  {x}^{2} }

Therefore :-

\implies\displaystyle \int {e^{x}}(  {\tan}^{ - 1} (x)  +  \dfrac{1}{1 +  {x}^{2} }) dx = {e^{x}}  {\tan}^{ - 1} (x) + c

where c is constant.

  \implies{e^{x}}  {\tan}^{ - 1} (x) + c

Answer :

{e^{x}}  {\tan}^{ - 1} (x) + c

_______________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

_____________________

Similar questions