Math, asked by Anonymous, 8 months ago

Integrate the following
 \displaystyle \sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2sin2x}  }  = (tan \: x) {}^{a}  + c(tan \: x) {}^{b}  + k
Here,
k is the constant of integration

Find the value of a + b + c.

Thank You​

Answers

Answered by BrainlyPopularman
35

GIVEN :

 \\  \implies \displaystyle \sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2sin2x} } = (tan \: x) {}^{a} + c(tan \: x) {}^{b} + k \\

TO FIND :

a + b + c = ?

SOLUTION :

 \\ I =  \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2sin2x} } \\

• Using identity –

 \\  \longrightarrow  \sf \:  \sin(2x)  = 2 \sin(x) \cos(x)   \\

• So that –

 \\ I =  \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2(2 \sin x \cos x)} } \\

 \\ I =  \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{4 \sin x \cos x} } \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{dx}{ {cos}^{3}x  \sqrt{ \sin(x) } \sqrt{ \cos(x) }  } \\

• We should write this as –

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{3}x ) \sqrt{ \sin(x) } \sqrt{ \cos(x) } \left( \dfrac{ \sqrt{ \cos(x) } }{ \sqrt{ \cos(x) } } \right) } \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{3}x ) \sqrt{ \cos(x) } \sqrt{ \cos(x) } \left( \dfrac{ \sqrt{ \sin(x) } }{ \sqrt{ \cos(x) } } \right) } \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{4}x )  \sqrt{ \tan(x) }} \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{( { \sec}^{4}x ) dx}{ \sqrt{ \tan(x) }} \\

• We should write this as –

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{( { \sec}^{2}x ).( { \sec}^{2}x ) dx}{ \sqrt{ \tan(x) }} \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{(1  + { \tan}^{2}x ).( { \sec}^{2}x ) dx}{ \sqrt{ \tan(x) }} \:  \:  \:  \: \left[ \: \because \:  \: { \sec}^{2}x =1  + { \tan}^{2}x \right] \\

• Let put tan(x) = t –

• Differentiate with respect to 't' –

 \\  \implies \sf  { \sec}^{2}(x) \dfrac{dx}{dt}  = \dfrac{dt}{dt} \\

 \\  \implies \sf  { \sec}^{2}(x) \dfrac{dx}{dt}  = 1 \\

 \\  \implies \sf  { \sec}^{2}(x) dx  = dt \\

• So that –

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \dfrac{(1  + {t}^{2} ).dt}{ \sqrt{t }}  \\

 \\ I =  \displaystyle\sf  \dfrac{1}{2} \int \left( \dfrac{1}{ \sqrt{t }} +  {t}^{ \frac{3}{2}} \right) .dt  \\

• Using formula –

 \\  \longrightarrow  \displaystyle\sf  \int  {x}^{n} .dx =  \dfrac{ {x}^{n + 1}}{n + 1}   \\

• So –

 \\ I = \sf  \dfrac{1}{2}  \left( \dfrac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } +   \dfrac{{t}^{ \frac{5}{2}}}{ \frac{5}{2} } \right) + k  \\

 \\ I = \sf  \dfrac{1}{2}  \left( 2 \times { {t}^{ \frac{1}{2} } } +   {t}^{ \frac{5}{2}} \times { \frac{2}{5} } \right) + k  \\

 \\ I =  \sf {t}^{ \frac{1}{2} }   +  \frac{1}{5}  {t}^{ \frac{5}{2} } + k  \\

• Now compare –

 \\  \:  \:  \:  \: { \huge{.}} \sf \:  \: a =  \dfrac{1}{2}   \\

 \\  \:  \:  \:  \: { \huge{.}} \sf \:  \: b =  \dfrac{5}{2}   \\

 \\  \:  \:  \:  \: { \huge{.}} \sf \:  \: c =  \dfrac{1}{5}   \\

 \\  \implies \sf a + b + c = \dfrac{1}{2}  + \dfrac{5}{2} +\dfrac{1}{5} \\

 \\  \implies \sf a + b + c =3 + \dfrac{1}{5} \\

 \\  \implies \sf a + b + c = \dfrac{15 + 1}{5} \\

 \\  \implies \large{ \boxed{ \sf a + b + c = \dfrac{16}{5}}} \\


Steph0303: Great answer :)
Answered by EthicalElite
40

 \displaystyle \sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2sin2x} } = (tan \: x) {}^{a} + c(tan \: x) {}^{b} + k

Find a+b+c=?

=> I = \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2sin2x} }

By using identity:-

 \sf \: \sin(2x) = 2 \sin(x) \cos(x)

Therefore,  I = \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{2(2 \sin x \cos x)} }

 I = \displaystyle\sf \int \dfrac{dx}{ {cos}^{3}x \sqrt{4 \sin x \cos x} }

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{dx}{ {cos}^{3}x \sqrt{ \sin(x) } \sqrt{ \cos(x) } }

We can write it as:-

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{3}x ) \sqrt{ \sin(x) } \sqrt{ \cos(x) } \left( \dfrac{ \sqrt{ \cos(x) } }{ \sqrt{ \cos(x) } } \right) }

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{3}x ) \sqrt{ \cos(x) } \sqrt{ \cos(x) } \left( \dfrac{ \sqrt{ \sin(x) } }{ \sqrt{ \cos(x) } } \right) }

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{dx}{( {cos}^{4}x ) \sqrt{ \tan(x) }}

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{( { \sec}^{4}x ) dx}{ \sqrt{ \tan(x) }}

We can write it as:-

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{( { \sec}^{2}x ).( { \sec}^{2}x ) dx}{ \sqrt{ \tan(x) }}

As, { \sec}^{2}x =1 + { \tan}^{2}x

 I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{(1 + { \tan}^{2}x ).( { \sec}^{2}x ) dx}{ \sqrt{ \tan(x) }}

Let tan(x) = t

=>  \sf { \sec}^{2}(x) \dfrac{dx}{dt} = \dfrac{dt}{dt}

=>  \sf { \sec}^{2}(x) \dfrac{dx}{dt} = 1

=>  \sf { \sec}^{2}(x) dx = dt

Therefore,  I = \displaystyle\sf \dfrac{1}{2} \int \dfrac{(1 + {t}^{2} ).dt}{ \sqrt{t }}

 I = \displaystyle\sf \dfrac{1}{2} \int \left( \dfrac{1}{ \sqrt{t }} + {t}^{ \frac{3}{2}} \right) .dt

By using formula:-

 \displaystyle\sf \int {x}^{n} .dx = \dfrac{ {x}^{n + 1}}{n + 1}

Therefore,  I = \sf \dfrac{1}{2} \left( \dfrac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + \dfrac{{t}^{ \frac{5}{2}}}{ \frac{5}{2} } \right) + k

 I = \sf \dfrac{1}{2} \left( 2 \times { {t}^{ \frac{1}{2} } } + {t}^{ \frac{5}{2}} \times { \frac{2}{5} } \right) + k

 I = \sf {t}^{ \frac{1}{2} } + \frac{1}{5} {t}^{ \frac{5}{2} } + k

Compare the equations:-

 \: \: \: \: { \huge{.}} \sf \: \: a = \dfrac{1}{2}

 \: \: \: \: { \huge{.}} \sf \: \: b = \dfrac{5}{2}

 \: \: \: \: { \huge{.}} \sf \: \: c = \dfrac{1}{5}

=>  \sf a + b + c = \dfrac{1}{2} + \dfrac{5}{2} +\dfrac{1}{5}

=>  \sf a + b + c =3 + \dfrac{1}{5}

=>  \sf a + b + c = \dfrac{15 + 1}{5}

=>  \sf a + b + c = \dfrac{16}{5}


Anonymous: Well Done!
Similar questions