Integrate the following
From the limits [0,pi/4]
Answers
Solution:
I am solving this integration first by Indefinite Integration and applying the limits in the later stage.
Step 1: Convert Tan⁴x as Tan²x . Tan²x
→ I = ∫Tan⁴x.dx = ∫(Tan²x.Tan²x)dx
According to identities,
→ 1 + Tan²x = Sec²x
→ Tan²x = Sec²x - 1
Step 2: Convert one Tan²x based on the above identity.
→ ∫(Tan²x .Tan²x)dx = ∫(Sec²x - 1).Tan²x. dx
Step 3: Multiplying the terms inside, we get:
→ ∫(Sec²x.Tan²x - Tan²x).dx
Step 4: Let us substitute Tan x = t
→ Sec²x.dx = dt
→ ∫(Sec²x.Tan²x - Tan²x).dx = ∫(Sec²x.Tan²x)dx - ∫(Tan²x).dx
→ ∫(Sec²x.Tan²x)dx - ∫(Tan²x).dx = ∫t².dt - ∫(Tan²x).dx
Solving ∫t².dt, we get:
→ [ t³/3 ] + C
Substituting t = Tan x, we get:
→ [ t³/3 ] + C = Tan³x/3 + C → I₁
Now solving -∫(Tan²x).dx, we get:
→ -∫(Sec²x - 1).dx [Applying Identity]
→ -∫Sec²x.dx - 1∫dx
→ -Tan x + x + C [Integral Sec²x = Tan x] → I₂
Combining both we get:
→ ∫Tan⁴x.dx = I₁ + I₂
→ ∫Tan⁴x.dx = Tan³x/3 + C - Tan x + x + C
[Two constants add to give a common constant C]
→ ∫Tan⁴x.dx = Tan³x/3 - Tan x + x + C
Now applying Limits, we get:
Applying Upper Limit: π/4
→ [Tan (π/4)]³ / 3 - Tan (π/4) + (π/4)
→ ( 1 )³ / 3 - 1 + π/4
→ 1/3 - 1 + π/4
→ π/4 - 2/3
Applying Lower Limit: 0
→ [Tan (0)]³ / 3 + Tan (0) - (0)
→ 0/3 + 0 - 0 = 0
Hence the final result is: π/4 - 2/3 - 0 = π/4 - 2/3
Therefore the value of integral after applying limits is: (π/4 - 2/3)
♣ Qᴜᴇꜱᴛɪᴏɴ :
Integrate the following :
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
★═════════════════★
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
Apply Integral Reduction :
____________________________________________
____________________________________________
Compute the boundaries :