Math, asked by swanhayden7, 7 hours ago

Integrate the following

 \frac{1}{x( {x}^{3}  + 1)}

Please tell the complete steps

Answers

Answered by alaicacabrera
0

Step-by-step explanation:

yan na po pic pa heart po

pa brainlest. po thank you po god blesssss ingat stay safe po

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{x( {x}^{3}  + 1)}

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{x \times  {x}^{3} \bigg[1 + \dfrac{1}{ {x}^{3} } \bigg]}

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ {x}^{4} (1 +  {x}^{ - 3} )}

Now, To evaluate this integral, we have to use Method of Substitution.

So, Substitute

\purple{\rm :\longmapsto\:1 +  {x}^{ - 3}  = y}

\purple{\rm :\longmapsto\: - 3{x}^{ - 4}dx = dy}

\purple{\rm :\longmapsto\:\dfrac{dx}{ {x}^{4} } =  - \dfrac{dy}{3}}

So, on substituting these values, we get

\rm \:  =  \:  - \dfrac{1}{3}\displaystyle\int\rm  \frac{dy}{y}

\rm \:  =  \:  - \dfrac{1}{3}log |y|  + c

\rm \:  =  \:  - \dfrac{1}{3}log |1 +  {x}^{ - 3} |  + c

\rm \:  =  \:  - \dfrac{1}{3}log \bigg|1 +  \dfrac{1}{ {x}^{3} } \bigg|  + c

\rm \:  =  \:  - \dfrac{1}{3}log \bigg| \dfrac{ {x}^{3}  + 1}{ {x}^{3} } \bigg|  + c

OR

\rm \:  =  \:  \dfrac{1}{3}log \bigg| \dfrac{ {x}^{3}}{ {x}^{3}  + 1} \bigg|  + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions