Math, asked by priyankyamadan1979, 6 hours ago

Integrate the following

 \int _{ - 100}^{100} ( \frac{ {x}^{2} }{1 +  {2}^{x} } ) \: dx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{ - 100}^{100}\rm  \frac{ {x}^{2} }{1 +  {2}^{x} } \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle\int_{ - 100}^{100}\rm  \frac{ {x}^{2} }{1 +  {2}^{x} } \: dx -  -  - (1)

We know,

\boxed{\tt{ \displaystyle\int_a^b\rm f(x) \: dx \:  =  \: \displaystyle\int_a^b\rm f(a + b - x)dx}}

So, using this identity, we get

\rm :\longmapsto\:I = \displaystyle\int_{ - 100}^{100}\rm  \frac{ {( - x)}^{2} }{1 +  {2}^{ - x} } \: dx

\rm :\longmapsto\:I = \displaystyle\int_{ - 100}^{100}\rm  \frac{ {x}^{2} }{1 +   \dfrac{1}{ {2}^{x} }  } \: dx

\rm :\longmapsto\:I = \displaystyle\int_{ - 100}^{100}\rm  \frac{ {x}^{2} {2}^{x}  }{{2}^{x}  + 1} \: dx -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2I = \displaystyle\int_{ - 100}^{100}\rm  \frac{  {x}^{2} +  {x}^{2} {2}^{x}  }{{2}^{x}  + 1} \: dx

\rm :\longmapsto\:2I = \displaystyle\int_{ - 100}^{100}\rm  \frac{  {x}^{2}(1 +  {2}^{x})}{{2}^{x}  + 1} \: dx

\rm :\longmapsto\:2I = \displaystyle\int_{ - 100}^{100}\rm   {x}^{2}  \: dx

\rm :\longmapsto\:2I = \bigg[\dfrac{ {x}^{2 + 1} }{2 + 1} \bigg]_{ - 100}^{100}

\rm :\longmapsto\:2I = \bigg[\dfrac{ {x}^{3} }{3} \bigg]_{ - 100}^{100}

\rm :\longmapsto\:2I = \dfrac{1}{3}[ {(100)}^{3} -  {( - 100)}^{3}]

\rm :\longmapsto\:2I = \dfrac{1}{3}[ 1000000 + 1000000]

\rm :\longmapsto\:2I = \dfrac{1}{3}[ 2000000]

\rm :\longmapsto\:I = \dfrac{1000000}{3}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\int_{ - 100}^{100}\rm  \frac{ {x}^{2} }{1 +  {2}^{x} } \: dx =  \frac{1000000}{3}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int_a^b\rm f(x) \: dx \:  =  \: \displaystyle\int_a^b\rm f(y)dy}}

\boxed{\tt{ \displaystyle\int_a^b\rm f(x) \: dx \:  =  \:  -  \: \displaystyle\int_b^a\rm f(x)dx}}

\boxed{\tt{ \displaystyle\int_0^a\rm f(x) \: dx \:  =  \: \displaystyle\int_0^a\rm f(a - x)dx}}

\boxed{\tt{ \displaystyle\int_{ - a}^a\rm f(x) \: dx \:  =  \:2 \displaystyle\int_0^a\rm f( x)dx \:  \: if \: f( - x) = f(x)}}

\boxed{\tt{ \displaystyle\int_{ - a}^a\rm f(x) \: dx \:  =  0 \:  \: if \: f( - x)  \: = \:  -  \:  f(x)}}

\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  =  0 \:  \: if \: f(2a - x)  \: = \:  -  \:  f(x)}}

\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  =  \displaystyle\int_0^a\rm f(x)dx\:  \: if \: f(2a - x) = f(x)}}

Similar questions