Math, asked by papafairy143, 4 days ago

Integrate the following

 \int \:  \frac{logx - 1}{ {(logx)}^{2} }  \: dx \:

Answers

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  \frac{logx - 1}{ {(logx)}^{2} } \: dx \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \: logx \:  =  \: y \\

\rm\implies \:x =  {e}^{y}

\rm\implies \:dx =  {e}^{y} \: dy \\

So, on substituting these values in given integral, we get

\rm \: =  \:\displaystyle\int\rm  \frac{y - 1}{ {y}^{2} } \: {e}^{y} \: dy \\

can be further rewritten as

\rm \: =  \:\displaystyle\int\rm \bigg(\dfrac{y}{ {y}^{2} }  - \dfrac{1}{ {y}^{2} }  \bigg) {e}^{y} \: dy \\

\rm \: =  \:\displaystyle\int\rm \bigg(\dfrac{1}{ {y}}  - \dfrac{1}{ {y}^{2} }  \bigg) {e}^{y} \: dy \\

We know,

\boxed{\rm{  \:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)] \: dx \:  =  \: {e}^{x}f(x) + c \:  \: }} \\

So, here in this integral,

\rm \: f(y) = \dfrac{1}{y}  \\

\rm \: f'(y) = -  \:  \dfrac{1}{ {y}^{2} }  \\

So, using above result, we get

\rm \: =  \:{e}^{y} \:  \times \dfrac{1}{y}  + c \\

\rm \: =  \:\dfrac{x}{logx}  + c \\

Hence,

\boxed{\rm{  \:\rm \: \displaystyle\int\rm  \frac{logx - 1}{ {(logx)}^{2} } \: dx  \:  =  \:  \frac{x}{logx} + c \:  \:}}  \\

\rule{190pt}{2pt}

Proof of

\boxed{\rm{  \:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)] \: dx \:  =  \: {e}^{x}f(x) + c \:  \: }} \\

Consider,

\rm\:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)] \: dx \:    \\

can be rewritten as

\rm \: =  \:\displaystyle\int\rm {e}^{x} \: f(x)dx \:  +  \: \displaystyle\int\rm {e}^{x}f'(x)dx \\

Now, using integration by parts in first integral, we get

\rm \: =  \:f(x)\displaystyle\int\rm {e}^{x} \: dx  - \displaystyle\int\rm \bigg[\dfrac{d}{dx}f(x)\displaystyle\int\rm {e}^{x}dx\bigg]dx+  \: \displaystyle\int\rm {e}^{x}f'(x)dx \\

\rm \: =  \:{e}^{x}f(x)  - \displaystyle\int\rm f'(x){e}^{x} \: dx+  \: \displaystyle\int\rm {e}^{x}f'(x)dx  + c\\

\rm \: =  \:{e}^{x}f(x) + c\\

Hence,

\rm\implies \:\rm\:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)] \: dx \:   =  \: {e}^{x}f(x) \:  +  \: c  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by phelper27
21

SOLUTION :

please check the attached file

Attachments:
Similar questions