Math, asked by Aditya8854, 2 days ago

Integrate the following
int \:  \:  tan {}^{ - 1}   \sqrt{ \frac{1 + cos \: x}{1 -cos \: x} } dx

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\displaystyle\int\tan^{-1}\left(\sqrt{\dfrac{1+\cos(x)}{1-\cos(x)}}\right)\,dx

\displaystyle=\int\tan^{-1}\left(\sqrt{\dfrac{2\cos^{2}\left(\dfrac{x}{2}\right)}{2\sin^{2}\left(\dfrac{x}{2}\right)}}\right)\,dx

\displaystyle=\int\tan^{-1}\left(\sqrt{\dfrac{\cos^{2}\left(\dfrac{x}{2}\right)}{\sin^{2}\left(\dfrac{x}{2}\right)}}\right)\,dx

\displaystyle=\int\tan^{-1}\left(\sqrt{\cot^{2}\left(\dfrac{x}{2}\right)}\right)\,dx

\displaystyle=\int\tan^{-1}\left(\cot\left(\dfrac{x}{2}\right)\right)\,dx

\displaystyle=\int\tan^{-1}\left(\tan\left(\dfrac{\pi}{2}-\dfrac{x}{2}\right)\right)\,dx

\displaystyle=\int\left(\dfrac{\pi}{2}-\dfrac{x}{2}\right)\,dx

=\dfrac{\pi x}{2}-\dfrac{{x}^{2}}{4}+C

Similar questions