Math, asked by vanithageeth1976, 1 day ago

integrate the following
( \sqrt{x \:  }  +  \:  \frac{1}{3 \sqrt{x} } )dx

Answers

Answered by jitendra12iitg
1

Answer:

The answer is \frac{2}{3}\sqrt x(x+1)+c

Step-by-step explanation:

      \displaystyle \int (\sqrt x+\frac{1}{3\sqrt x})dx

   =\displaystyle \int(x^{\frac{1}{2}}+\frac{1}{3}x^{-\frac{1}{2}})dx\\=\displaystyle \int x^{\frac{1}{2}}dx+\frac{1}{3}\int x^{-\frac{1}{2}}dx\\\\=\dfrac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{1}{3}\dfrac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c

  • Since \displaystyle \int x^ndx =\frac{x^{n+1}}{n+1}+C

      =\dfrac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{1}{3}\dfrac{x^{\frac{1}{2}}}{\frac{1}{2}}+c\\\\=\frac{2}{3}x^{\frac{3}{2}}+\frac{2}{3}x^{\frac{1}{2}}+c\\\\=\frac{2}{3}\sqrt x(x+1)+c

Similar questions