Math, asked by Itzheartcracer, 2 days ago

Integrate the following w.r.t x
\bf \dfrac{x}{\sqrt{1+x^2}}

Answers

Answered by Vikramjeeth
24

Integrate the following w.r.t x

x/√1+x²

Answer:

→ ∫x/√(1+x²)dx

=½∫(2x)(1+x²)^(-½)dx

=½[(1+x²)^(½)/½]+C

=√(1+x²)+C

 \:

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \int \frac{x}{ \sqrt{1 +  {x}^{2} } } \: dx

To evaluate, this integral, we use method of Substitution.

Let we substitute,

 \red{\rm :\longmapsto\: \sqrt{1 +  {x}^{2} } = y}

On squaring both sides, we get

\red{\rm :\longmapsto\:1 +  {x}^{2} =  {y}^{2} }

On differentiating, we get

\red{\rm :\longmapsto\:2x \: dx =  2y \: dy}

\red{\rm :\longmapsto\:x \: dx =  y \: dy}

So, on substituting these values, the given integral reduces to

 \rm =  \: \displaystyle \int \frac{y \: dy}{y}

 \rm =  \: \displaystyle \int \: dy

 \rm =  \: y \:  +  \: c

 \rm =  \:  \sqrt{1 +  {x}^{2} }  \:  +  \: c

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle \int \frac{x}{ \sqrt{1 +  {x}^{2} } } \: dx =  \sqrt{1 +  {x}^{2} }  + c\: }}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions