Math, asked by GummyMin, 4 days ago

Integrate the following with respect to x : 2x-3÷x^2+4x-12​

Answers

Answered by anshikatiwari1210
1

Step-by-step explanation:

i am posting a photo related to this question

hope it will help uuu

Attachments:
Answered by Syamkumarr
1

Answer:

\int {\frac{2x-3}{x^{2} +4x-12} } \, dx =  \frac{1}{4} * log (x+6)⁹ (x-2)

Step-by-step explanation:

Given that \int {\frac{2x-3}{x^{2} +4x-12} } \, dx

We factorize the denominator that is  x² + 4x - 12

We know that 6 + (-2) = 4 and 6*(-2) = -12

Therefore, by mid term splitting, we get,

x² + 4x - 12 = x² + 6x - 2x - 12

                  = x(x+6) -2(x+6)

                  = (x+6) (x - 2)

=>   \int {\frac{2x-3}{x^{2} +4x-12} } \, dx =  \int {\frac{2x-3}{(x+6)(x-2)} } \, dx

Now as the denominator as two not repeated factors,

We integrate using partial fractions,

=> \frac{2x-3}{(x+6)(x-2)} = \frac{A}{x+6} + \frac{B}{x-2}

                    = \frac{A(x-2) + B(x+6)}{(x+6)(x-2)}

=> 2x - 3 = Ax - 2A + Bx + 6B

Equating the terms on both the sides, we get,

2x = Ax - Bx  and -3 = -2A + 6B

=> 2 = A - B      and  - 3 = -2A + 6B

=> A = 2 + B

We will substitute this value in the other equation,

=>  - 3 = -2(2+B) + 6B

=> -3 = -4 -2B + 6B

=> -3+4 = 4B

=> 1 = 4B

=> B = 1/4

As A = 2+B

=> A = 2 + 1/4 = 9/4

We substitute these values in the equation.

=> \frac{2x-3}{(x+6)(x-2)} = \frac{A}{x+6} + \frac{B}{x-2} = \frac{9}{4(x+6)} + \frac{1}{4(x-2)}

Integrating now,

\int {\frac{2x-3}{(x+6)(x-2)} } \, dx = \int {\frac{9}{4(x+6)} } \, dx + \int {\frac{1}{4(x-2)} } \, dx

                       = \frac{9}{4}\int {\frac{1}{(x+6)} } \, dx +   \frac{1}{4}\int {\frac{1}{(x-2)} } \, dx

                      = \frac{9}{4} log |x+6| +    \frac{1}{4} log |x-2|

                      = \frac{1}{4} * (9log |x+6| + log |x-2|)

                      = \frac{1}{4} * (log |x+6|⁹ + log |x-2|)      (as log mⁿ = n log m)

                      = \frac{1}{4} * log (x+6)⁹ (x-2)                (as log m + log n = log mn)

Therefore, \int {\frac{2x-3}{x^{2} +4x-12} } \, dx =  \frac{1}{4} * log (x+6)⁹ (x-2)

Similar questions