Math, asked by guptaananya2005, 7 hours ago

Integrate the following with respect to x

 \frac{1}{xlogxlog(logx)}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int  \frac{1}{x \: logx \: log(logx)} \: dx

To solve this integral, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:log(logx) = y}

\red{\rm :\longmapsto\:\dfrac{d}{dx} log(logx) = \dfrac{d}{dx} y}

\red{\rm :\longmapsto\:\dfrac{1}{x \: logx}  \: dx \:  =  \: dy}

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\int  \frac{1}{y}  \: dy

\rm \:  =  \: log |y|  + c

\rm \:  =  \: log |log \: (logx)|  + c

Hence,

\rm \implies\:\boxed{\tt{ \displaystyle\int  \frac{1}{x \: logx log(logx)}dx = log |log \: (logx)|  + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions