Math, asked by jaideepabrahamp, 3 months ago

integrate the function (1-x)(2+3x)(5-4x)​

Answers

Answered by amansharma264
4

EXPLANATION.

⇒ ∫(1 - x)(2 + 3x)(5 - 4x)dx.

As we know that,

Factorizes the equation, we get.

⇒ (1 - x)(2 + 3x))(5 - 4x).

⇒ (1 - x)[10 - 8x + 15x - 12x²].

⇒ (1 - x)[10 + 7x - 12x²].

⇒ 10 + 7x - 12x² - 10x - 7x² + 12x³.

⇒ 10 - 3x - 19x² + 12x³.

⇒ ∫(10 - 3x - 19x² + 12x³)dx.

⇒ ∫(10)dx - ∫(3x)dx - ∫(19x²)dx + ∫(12x³)dx.

Using the formula,

⇒ ∫aⁿdx = aⁿ⁺¹/n + 1.

Take constant term outside the integration, we get.

⇒ 10∫dx - 3∫xdx - 19∫x²dx + 12∫x³dx.

⇒ 10x - 3(x²/2) - 19(x³/3) + 12(x⁴/4) + c.

⇒ 10x - 3x²/2 - 19x³/3 + 3x⁴ + c.

                                                                                       

MORE INFORMATION.

Standard integrals.

(1) = ∫Sin(x)dx = - Cos(x) + c.

(2) = ∫Cos(x)dx = Sin(x) + c.

(3) = ∫tan(x)dx = ㏒(Sec(x)) + c = - ㏒(Cos(x)) + c.

(4) = ∫cot(x)dx = ㏒(sin(x)) + c.

(5) = ∫Sec(x)dx = ㏒(Sec(x) + tan(x)) + c. = -㏒(Sec(x) - tan(x)) + c = ㏒ tan(π/4 + x/2) + c.

(6) = ∫Cosec(x)dx = -㏒(Cosec(x) + Cot(x)) + c = ㏒(Cosec(x) - Cot(x)) + c = ㏒ tan(x/2) + c.

(7) = ∫Sec(x).tan(x)dx = Sec(x) + c.

(8) = ∫Cosec(x).Cot(x)dx = -Cosec(x) + c.

(9) = ∫Sec²xdx = tan(x) + c.

(10) = ∫Cosec²xdx = -Cot(x) + c.

Answered by Anonymous
3

EXPLANATION.

⇒ ∫(1 - x)(2 + 3x)(5 - 4x)dx.

As we know that,

Factorizes the equation, we get.

⇒ (1 - x)(2 + 3x))(5 - 4x).

⇒ (1 - x)[10 - 8x + 15x - 12x²].

⇒ (1 - x)[10 + 7x - 12x²].

⇒ 10 + 7x - 12x² - 10x - 7x² + 12x³.

⇒ 10 - 3x - 19x² + 12x³.

⇒ ∫(10 - 3x - 19x² + 12x³)dx.

⇒ ∫(10)dx - ∫(3x)dx - ∫(19x²)dx + ∫(12x³)dx.

Using the formula,

⇒ ∫aⁿdx = aⁿ⁺¹/n + 1.

Take constant term outside the integration, we get.

⇒ 10∫dx - 3∫xdx - 19∫x²dx + 12∫x³dx.

⇒ 10x - 3(x²/2) - 19(x³/3) + 12(x⁴/4) + c.

⇒ 10x - 3x²/2 - 19x³/3 + 3x⁴ + c.

                                                                                       

MORE INFORMATION.

Standard integrals.

(1) = ∫Sin(x)dx = - Cos(x) + c.

(2) = ∫Cos(x)dx = Sin(x) + c.

(3) = ∫tan(x)dx = ㏒(Sec(x)) + c = - ㏒(Cos(x)) + c.

(4) = ∫cot(x)dx = ㏒(sin(x)) + c.

(5) = ∫Sec(x)dx = ㏒(Sec(x) + tan(x)) + c. = -㏒(Sec(x) - tan(x)) + c = ㏒ tan(π/4 + x/2) + c.

(6) = ∫Cosec(x)dx = -㏒(Cosec(x) + Cot(x)) + c = ㏒(Cosec(x) - Cot(x)) + c = ㏒ tan(x/2) + c.

(7) = ∫Sec(x).tan(x)dx = Sec(x) + c.

(8) = ∫Cosec(x).Cot(x)dx = -Cosec(x) + c.

(9) = ∫Sec²xdx = tan(x) + c.

(10) = ∫Cosec²xdx = -Cot(x) + c.

Similar questions