Math, asked by BAAZ7466, 1 year ago

integrate the function~​

Attachments:

Answers

Answered by robinsehrawat2000
0

x - 3 \ \div 2 +   \sqrt{ {x }^{2 } - 3x + 2 }  + c

Attachments:
Answered by Anonymous
12

Answer:

\large \bold\red{ ln |4x - 6 +  \sqrt{4 {x}^{2}  - 12x + 5} |    + C'}

Step-by-step explanation:

Given,

\int \frac{1}{ \sqrt{(x - 2)(x - 1)} } dx

Further simplifying,

We get,

 = \int \frac{1}{ \sqrt{ {x}^{2}  - x - 2x + 2} } dx \\  \\  = \int \frac{1}{ \sqrt{ {x}^{2}  - 3x + 2} } dx \\  \\  =  \int\frac{1}{ \sqrt{ {(x)}^{2}  - 2 \cdot \frac{3}{2}  \cdot  x +  {( \frac{3}{2} )}^{2}  + 2 -  \frac{9}{4} } }dx  \\  \\  = \int \frac{1}{ \sqrt{ {(x -  \frac{3}{2}) }^{2}  + ( \frac{8 - 9}{4} )} } dx \\  \\  = \int \frac{1}{ \sqrt{ {(x -  \frac{3}{2}) }^{2}  -  {( \frac{1}{2} )}^{2} } } dx

Now,

Let's assume that,

x -  \frac{3}{2}  = t

Differentiating both the sides,

We get,

 =  > dx = dt

Substituting the values,

We get,

 = \int    \frac{1}{ \sqrt{ {(t)}^{2}  -  {( \frac{1}{2}) }^{2} } } dt \\  \\  =  ln |t +  \sqrt{ {t}^{2}  -  \frac{1}{4} } |    + c\\ \\   =  ln |t +  \frac{ \sqrt{ {t}^{2} - 1 } }{2} |  +  c

Substituting the values of t,

We get,

  = ln |x -  \frac{3}{2} +   \frac{ \sqrt{ {x}^{2} - 3x +  \frac{9}{4}  - 1 } }{2} |  + c \\  \\  =  ln |x -  \frac{3}{2} +  \frac{ \sqrt{4 {x}^{2}  - 12x + 5} }{4}  |  + c \\  \\ ln | \frac{4x - 6 +  \sqrt{4 {x}^{2}  - 12x + 5} }{4} |  + c \\  \\    =  \large \bold{ ln |4x - 6 +  \sqrt{4 {x}^{2}  - 12x + 5} |    + C'}

Where,

C' is an integral Constant.

Similar questions