Math, asked by BrainlyHelper, 1 year ago

integrate the function √(ax + b).dx

Answers

Answered by abhi178
6
Given, \int{\sqrt{ax+b}}\,dx
Let us consider (ax + b) = t
differentiate both sides,
a.dx = dt => dx = dt/a , put it above integration

\int{\sqrt{ax+b}}\,dx=\int{\sqrt{t}}\,\frac{1}{a}dt\\\\=\frac{1}{a}\int{\sqrt{t}}\,dt\\\\=\frac{1}{a}\frac{t^{1/2+1}}{1/2+1}+C\\\\=\frac{2t^{3/2}}{3a}+C
now, put t = (ax + b)
so, I = \frac{2(ax+b)^{3/2}}{3a}+C
Answered by rohitkumargupta
6
HELLO DEAR,


Given, \bold{<br />\int{\sqrt{ax+b}}\,dx} 

Let (ax + b) = t \bold{\Rightarrow a.dx = dt }
\bold{\Rightarrow  dx = dt/a}


\bold{\int{\sqrt{ax+b}}\,dx=\int{\sqrt{t}}\,\frac{1}{a}dt}\\\\ \Rightarrow \bold{\frac{1}{a}\int{\sqrt{t}}\,dt} \\\\ \Rightarrow \bold{\frac{1}{a}\frac{t^{1/2+1}}{1/2+1}+C} \\\\ \Rightarrow \bold{\frac{2t^{3/2}}{3a}+C}

now, put the value of t = (ax + b) in the above function

so, I = \bold{\frac{2(ax+b)^{3/2}}{3a} + c}

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions