Math, asked by shikhar8828, 1 year ago

integrate the function:- cos3(x)?

Answers

Answered by shadowsabers03
0

We have to find,

\displaystyle\int\cos^3x\ dx

Before, we know that,

\cos(3x)=4\cos^3x-3\cos x

From this, we get,

\cos^3x=\dfrac {\cos(3x)+3\cos x}{4}

So,

\displaystyle\int\cos^3x\ dx\\\\=\int\left (\dfrac {\cos(3x)+3\cos x}{4}\right)dx\\\\=\dfrac {1}{4}\left [\int\cos(3x)\ dx\ +\ 3\int\cos x\ dx\right]

Let,

\begin {aligned}&u=3x\\\\\implies\ \ &\dfrac {du}{dx}=3\\\\\implies \ \ &dx=\dfrac {1}{3}du=\dfrac {1}{3}d(3x)\end {aligned}

So,

\displaystyle\dfrac {1}{4}\left [\int\cos(3x)\ dx\ +\ 3\int\cos x\ dx\right]\\\\=\dfrac {1}{4}\left [\dfrac {1}{3}\int\cos(3x)\ d(3x)\ +\ 3\int\cos x\ dx\right]\\\\=\mathbf{\dfrac {1}{4}\left [\dfrac {1}{3}\sin(3x)+3\sin x\right]}

Similar questions