Math, asked by BrainlyHelper, 1 year ago

integrate the function [(e^{2x} - 1)/(e^{2x} + 1)].dx

Answers

Answered by abhi178
9
\bf{I=\int{\frac{e^{2x}-1}{e^{2x}+1}}\,dx}

we know, \frac{e^{2x}-1}{e^{2x}+1}=\frac{e^x-e^{-x}}{e^x-e^{-x}}

\bf{I=\int{\frac{e^x-e^{-x}}{e^x+e^{-x}}}\,dx}

Let e^x + e^{-x} = f(x) -----(1)

differentiate both sides,

e^x - e^{-x}=f'(x) -----(2)

put equations (1) and (2) in I,

I = \bf{\int{\frac{f'(x)}{f(x)}}\,dx}

= \bf{log|f(x)|}+C

put f(x) = e^x + e^{-x}

therefore, I = \bf{log|e^x+e^{-x}|}+C
Answered by rohitkumargupta
5

HELLO DEAR,

given function is \bold{\int{\frac{e^{2x} - 1}{e^{2x} + 1}}\,dx}

Divide both numerator and denominator by e^{x}

\bold{\int{\frac{\frac{e^{2x} - 1}{e^x}}{\frac{e^{2x} + 1}{e^x}}}\,dx}

\bold{\int{\frac{(e^x - e^{-x})}{(e^x + e^{-x})}}\,dx}

let (e^x + e^{-x}) = t
\bold{dt/dx = (e^x - e^{-x})}
\bold{\Rightarrow dx = dt/(e^x - e^{-x})}

So, \bold{\int{\frac{(e^x - e^{-x})}{(e^x + e^{-x})} * dt/(e^x - e^{-x})}\,dx}

\bold{\int{dt/t}}

\bold{log|t| + c}

put the value of t in the above function,

\bold{log|e^x + e^{-x}| + c}


I HOPE ITS HELP YOU DEAR,
THANKS

Similar questions