Math, asked by BrainlyHelper, 1 year ago

integrate the function [e^{2x} - e^{-2x}]/[e^{2x} + e^{-2x}].dx

Answers

Answered by Ravi1435
0
this is answer ...........
Attachments:
Answered by abhi178
2
\bf{I=\int{\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}}\,dx}

Let \bf{e^{2x}+e^{-2x}=f(x)}

differentiate both sides,

\bf{2e^{2x}-2e^{-2x}=f'(x)}\\\bf{2(e^{2x}-e^{-2x})=f'(x)}

now, put it above integration (I),

I=\bf{\int{\frac{f'(x)}{2f(x)}}\,dx}

= \bf{\frac{1}{2}ln|f(x)|+C}

put f(x) = (e^{2x}+e^{-2x})
therefore, I =\bf{\frac{1}{2}ln|e^{2x}+e^{-2x}|+C}
Similar questions