Math, asked by Anonymous, 1 month ago

Integrate the function :
f(x) = 1/(x+2)

Answers

Answered by MrImpeccable
14

ANSWER:

To Integrate:

  • f(x) = 1/(x +2)

Solution:

We need to find integral of,

\implies f(x)=\dfrac{1}{x+2}

That is, we need to find the value of,

\displaystyle\implies\int\dfrac{1}{x+2}\:\sf dx

Let us substitute, u = x + 2,

So, differentiating both sides,

\implies u=x+2

\implies\dfrac{du}{dx}=\dfrac{d}{dx}(x+2)

\implies\dfrac{du}{dx}=1

\implies du=dx

So,

\displaystyle\implies\int\dfrac{1}{x+2}\:\sf dx

\displaystyle\implies\int\dfrac{1}{u}\:\sf du

We know that,

\displaystyle\implies\int\dfrac{1}{t}\:\sf dt=\ln(|t|)+C

So,

\displaystyle\implies\int\dfrac{1}{u}\:\sf du

\implies \ln(|u|)+C

Substituting the value of u,

\implies \ln(|x+2|)+C

Hence,

\displaystyle\bf\implies\int\dfrac{1}{x+2}\: dx=ln(|x+2|)+C

Similar questions