Math, asked by Anonymous, 1 year ago

Integrate the function.

No Copy / paste. Answer in the easy method. ​

Attachments:

Answers

Answered by Anonymous
7

\underline{\textbf{Step-by-step explanation:}}

let us consider,

I=\sf\int {\frac{1}{\sqrt{(x-a) (x-b) }}} dx

Now,\sf (x - a)(x - b)=x^2- ax - bx + ab

\sf[x^2-(a+b)x+ab]

\sf[x^2 - (a+b)x ]=-ab

add \sf{(\frac{a+b}{2})}^{2} on both the sides

\sf[x^2- (a+b)x +{(\frac{a+b}{2})}^{2}] = - ab + {(\frac{a+b}{2})}^{2}

\sf=[x^2 - (a + b)x +{(\frac{a+b}{2})}^{2}] + ab - {(\frac{a+b}{2})}^{2}

\sf={(x - \frac{a+b}{2})}^{2} + (\frac{4ab - a^2 - b^2 -2ab}{4})

\sf=(x-{\frac{a+b}{2}})^{2}-({\frac{a-b}{2}})^{2}

therefore,

\sf I=\int {\frac{dx}{\sqrt{({{x-\frac{a+b}{2}})^{2}-({\frac{a-b}{2}})^2}}}}

\sf=log |(x-\frac{a+b}{2})+\sqrt{({x-\frac{a+b}{2}})^{2}-({\frac{a-b}{2}})^2}|+c

\sf=log|(x -\frac{a+b}{2})+\sqrt{(x-a) (x-b) }|+c

Similar questions