Math, asked by gghj2, 8 months ago

integrate the function:
 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

Answers

Answered by Anonymous
315

Step-by-step explanation:

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function:

 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

\huge\tt\underline\blue{❯Answer❮</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

Let 2-x=t

differentiating both sides w.r.t.x

0 - 1 =  \frac{dt}{dx}

dx =  - dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2}  + t} } dx

Put the value of 2-x=t and dx=-dt

 =   ∫  \frac{ - dt}{ \sqrt{ {t}^{2}  + 1} }

 =  -   ∫  \frac{dt}{ \sqrt{ {t}^{2} +  {(1)}^{2}  } }

It is the form of :

  ∫  \frac{1}{ \sqrt{ {x}^{2}  +  {a}^{2} } } dx = log |x +  \sqrt{ {x}^{2}  +  {a}^{2} } | + c

∴ Replace a by 1 and x by t we get

 =  - log |t +   \sqrt{ {t}^{2} + 1 }  |  + c

 = log  { |t +  \sqrt{ {t}^{2}  + 1} | }^{ - 1}  + c

 = log \frac{1}{ |t +  \sqrt{ {t}^{2}  + 1} | } + c

 = log \frac{1}{ |2 - x +  \sqrt{ {(2 - x)}^{2} + 1 } | }  + c

 = log \frac{1}{ |2 - x +  \sqrt{4 +  {x}^{2}  - 4x + 1} | }  + c

 = log \frac{1}{ |2 - x +  \sqrt{ {x}^{2}  - 4x + 5} | }  + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
1

Step-by-step explanation:

Step-by-step explanation:

Step-

\sf =  - log |t +   \sqrt{ {t}^{2} + 1 }  |  + c

 \sf= log  { |t +  \sqrt{ {t}^{2}  + 1} | }^{ - 1}  + c

\sf = log \frac{1}{ |t +  \sqrt{ {t}^{2}  + 1} | } + c

 \sf = log \frac{1}{ |2 - x +  \sqrt{4 +  {x}^{2}  - 4x + 1} | }  + c

 \sf = log \frac{1}{ |2 - x +  \sqrt{ {x}^{2}  - 4x + 5} | }  + c

Similar questions