English, asked by mohammad7754, 6 months ago

integrate the function:
\frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

Answers

Answered by mahiasija31
1

Answer:

Explanation: It is one of the Standard Integral : ∫11+x2=arctanx+C .

Answered by Ladylaurel
8

Let 2-x=t

differentiating both sides w.r.t.x

0 - 1 = \frac{dt}{dx}0−1=

dx = - dtdx=−dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} }∫

Put the value of 2-x=t and dx=-d

= ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }=∫

It is the form of :

∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx =

log |x + \sqrt{ {x}^{2} + {a}^{2} } |∫

dx=log∣x+ x 2 +a2 ∣

∴ Replace a by 1 and x by t we get

= - log |t + \sqrt{ {t}^{2} + 1 }

= log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1}

= log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | }

= log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | }=

= log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | }=log

= log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | }

Similar questions