integrate the function:
Answers
Solution:-
Let 2-x=t
differentiating both sides w.r.t.x
Integrating the function w.r.t.x
Put the value of 2-x=t and dx=-d
It is the form of :
∴ Replace a by 1 and x by t we get
Answer:
Solution:-
Let 2-x=t
differentiating both sides w.r.t.x
0 - 1 = \frac{dt}{dx}0−1=dxdt
dx = - dtdx=−dt
Integrating the function w.r.t.x
∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} }∫(2−x)2+t1
Put the value of 2-x=t and dx=-d
= ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }=∫t2+1−dt
= - ∫ \frac{dt}{ \sqrt{ {t}^{2} + {(1)}^{2} } }=−∫t2+(1)2dt
It is the form of :
∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx = log |x + \sqrt{ {x}^{2} + {a}^{2} } |∫x2+a21dx=log∣x+x2+a2∣
∴ Replace a by 1 and x by t we get
= - log |t + \sqrt{ {t}^{2} + 1 } |=−log∣t+t2+1∣
= log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1}=log∣t+t2+1∣−1
= log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | }=log∣t+t2+1∣1
= log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | }=log∣2−x+(2−x)2+1∣1
= log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | }=log∣2−x+4+x2−4x+1∣1
= log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | }=log∣2−x+x2−4x+5∣1