Math, asked by nomoretit, 7 months ago

integrate the function:
 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

Answers

Answered by Anonymous
135

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function:

 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

\huge\tt\underline\blue{❯Answer❮</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{   Let 2-x=t}

differentiating both sides w.r.t.x

0 - 1 = \frac{dt}{dx}

dx = - dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} } dx

Put the value of 2-x=t and dx=-dt

 = ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }

 = - ∫ \frac{dt}{ \sqrt{ {t}^{2} + {(1)}^{2} } }

It is the form of :

 ∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx = log |x + \sqrt{ {x}^{2} + {a}^{2} } | + c

∴ Replace a by 1 and x by t we get:-

 = - log |t + \sqrt{ {t}^{2} + 1 } | + c

 = log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1} + c

 = log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | } + c

 = log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | } + c

 = log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | } + c

 = log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | } + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
3

Answer:

your answer

Step-by-step explanation:

hope it helps you

thank u

Attachments:
Similar questions