Math, asked by mohan7847, 5 months ago

integrate the function:
 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

Answers

Answered by Anonymous
138

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function:

 \frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

\huge\tt\underline\blue{❯Answer❮</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ Let \:2-x=t}

\bold{differentiating \:both\: sides \:w.r.t.x}

0 - 1 = \frac{dt}{dx}

dx = - dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} } dx

\bold{\red{Put\: the\: value \:of \:2-x=t \:and \:dx=-dt}

 = ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }

 = - ∫ \frac{dt}{ \sqrt{ {t}^{2} + {(1)}^{2} } }

It is the form of :

 ∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx = log |x + \sqrt{ {x}^{2} + {a}^{2} } | + c

∴ Replace a by 1 and x by t we get

 = - log |t + \sqrt{ {t}^{2} + 1 } | + c

 = log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1} + c

 = log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | } + c

 = log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | } + c

 = log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | } + c

 = log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | } + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
0

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘

℘ɧεŋσɱεŋศɭ

\red{\bold{\underline{\underline{❥Question᎓}}}}

❥Question᎓

integrate the function:

\frac{1}{ \sqrt{ {(2 - x)}^{2} + 1} }

(2−x)

2

+1

1

\huge\tt\underline\blue{❯Answer❮ }

❯Answer❮

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ Let \:2-x=t}Let2−x=t

\bold{differentiating \:both\: sides \:w.r.t.x}differentiatingbothsidesw.r.t.x

0 - 1 = \frac{dt}{dx}0−1=

dx

dt

dx = - dtdx=−dt

Integrating the function w.r.t.x

∫ \frac{1}{ \sqrt{ {(2 - x)}^{2} + t} } dx∫

(2−x)

2

+t

1

dx

\bold{\red{Put\: the\: value \:of \:2-x=t \:and \:dx=-dt}

= ∫ \frac{ - dt}{ \sqrt{ {t}^{2} + 1} }=∫

t

2

+1

−dt

= - ∫ \frac{dt}{ \sqrt{ {t}^{2} + {(1)}^{2} } }=−∫

t

2

+(1)

2

dt

It is the form of :

∫ \frac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } dx = log |x + \sqrt{ {x}^{2} + {a}^{2} } | + c∫

x

2

+a

2

1

dx=log∣x+

x

2

+a

2

∣+c

∴ Replace a by 1 and x by t we get

= - log |t + \sqrt{ {t}^{2} + 1 } | + c=−log∣t+

t

2

+1

∣+c

= log { |t + \sqrt{ {t}^{2} + 1} | }^{ - 1} + c=log∣t+

t

2

+1

−1

+c

= log \frac{1}{ |t + \sqrt{ {t}^{2} + 1} | } + c=log

∣t+

t

2

+1

1

+c

= log \frac{1}{ |2 - x + \sqrt{ {(2 - x)}^{2} + 1 } | } + c=log

∣2−x+

(2−x)

2

+1

1

+c

= log \frac{1}{ |2 - x + \sqrt{4 + {x}^{2} - 4x + 1} | } + c=log

∣2−x+

4+x

2

−4x+1

1

+c

= log \frac{1}{ |2 - x + \sqrt{ {x}^{2} - 4x + 5} | } + c=log

∣2−x+

x

2

−4x+5

1

+c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions