Math, asked by vkjhg, 7 months ago

integrate the function :
 \frac{1}{x + xlogx}

Answers

Answered by Anonymous
277

Step-by-step explanation:

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function :

 \frac{1}{x + xlogx}

\huge\tt\underline\pink{꧁Answer꧂</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹ \frac{1}{x + xlogx}  =  \frac{1}{x(1 + logx)} </p><p>

Let 1+logx=t

Differentiating both sides w.r.t.x

⟹</p><p>0 +  \frac{1}{x}  =  \frac{dt}{dx}

⟹</p><p> \frac{1}{x}  =  \frac{dt}{dx}

dx = xdt

Integrating function:-

⟹∫ \frac{1}{x + xlogx} dx = ∫ \frac{1}{x(1 + logx)} dx</p><p>

Putting 1+logx & dx =xdt

 = ∫ \frac{1}{x(t)} dt \times x = ∫ \frac{1}{t} dt

 = log |t|  + c

Put t=1+logx

 = log |1 + logx|  + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
0

Step-by-step explanation:

Step-by-step explanation:

given, \int{\frac{1}{x(logx)^m}}\,dx∫

x(logx)

m

1

dx , x >0

let logx = t

differentiate both sides,

1/x dx = dt , put it above Integration.

 \sf \: , \int{\frac{1}{x(logx)^m}}\,dx=\int{\frac{dt}{t^m}}∫

=

 \sf \: t^{-m} \\

\sf\frac{t^{1-m}}{1-m} \\

now, put t = logx

so, I =

\bf{\frac{(logx)^{1-m}}{1-m}}  \\

Similar questions