Math, asked by pinku3798, 6 months ago

integrate the function :
 \frac{1}{x + xlogx}

Answers

Answered by Anonymous
157

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function :

 \frac{1}{x + xlogx}

\huge\huge\tt\blue{「Answer」</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹ \frac{1}{x + xlogx} = \frac{1}{x(1 + logx)} </p><p>

Let 1+logx=t

Differentiating both sides w.r.t.x

⟹</p><p>0 + \frac{1}{x} = \frac{dt}{dx}

⟹</p><p> \frac{1}{x} = \frac{dt}{dx}

dx = xdt

Integrating function:-

⟹∫ \frac{1}{x + xlogx} dx = ∫ \frac{1}{x(1 + logx)} dx</p><p>

Putting 1+logx & dx =xdt

 = ∫ \frac{1}{x(t)} dt \times x = ∫ \frac{1}{t} dt

 = log |t| + c

Put t=1+logx

 = log |1 + logx| + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions