Math, asked by ture19, 6 months ago

integrate the function :
 \frac{1}{x + xlogx}

Answers

Answered by Anonymous
141

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\red{\bold{\underline{\underline{❥Question᎓}}}}integrate the function :

 \frac{1}{x + xlogx}

\huge\huge\tt\blue{「Answer」</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹ \frac{1}{x + xlogx}  =  \frac{1}{x(1 + logx)} </p><p>

\bold{\red{Let 1+logx=t}}

\bold{Differentiating\: both \:sides \:w.r.t.x}[/t ex]</p><p>[tex]⟹</p><p>0 +  \frac{1}{x}  =  \frac{dt}{dx}

⟹</p><p> \frac{1}{x}  =  \frac{dt}{dx}

dx = xdt

\bold{Integrating function:-}

⟹∫ \frac{1}{x + xlogx} dx = ∫ \frac{1}{x(1 + logx)} dx</p><p>

\bold{Putting \:1+logx\: &amp;\: dx =xdt}

 = ∫ \frac{1}{x(t)} dt \times x = ∫ \frac{1}{t} dt

 = log |t|  + c

\bold{Put\: t=1+logx}

 = log |1 + logx|  + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Itzmisspari03
1

answer in the attachment

Attachments:
Similar questions