Math, asked by PragyaTbia, 1 year ago

Integrate the function : \frac{3x}{1+2x^4}}

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

Attachments:
Answered by hukam0685
0
Solution:

To integrate the given function first convert it into integrable form

 \int\frac{3x}{1+2x^4}dx \\ \\ 3\int\frac{x}{1+ (\sqrt{2}{x}^{2}) ^2}dx \\ \\
let

 \sqrt{2} {x}^{2} = t \\ \\ 2 \sqrt{2} xdx = dt \\ \\ xdx = \frac{dt}{2 \sqrt{2} } \\ \\
substitute these values

 \frac{3}{2 \sqrt{2} } \int\frac{1}{1+ (t) ^2}dt \\ \\ = \frac{3}{2 \sqrt{2} } {tan}^{ - 1}t + C \\ \\
Redo substitution

\int\frac{3x}{1+2x^4}dx= \frac{3}{2 \sqrt{2} } {tan}^{ - 1}( \sqrt{2} {x}^{2} ) + C \\
Hope it helps you.
Similar questions