Math, asked by Anonymous, 6 months ago



Integrate the function

\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}

Answers

Answered by kush193874
4

Answer:

\sf\large\underline{Given:-}

\sf{\implies Principal=Rs.2000}

\sf{\implies Time\:_{(compound\: annually)}=3\dfrac{1}{4}\:years}

\sf{\implies Rate\:_{(compound\: interest)}=10\%}

\sf\large\underline{To\:Find:-}

\sf{\implies Amount\:_{(at\:the\:end\:of\:the\: year)}=?}

\sf\large\underline{Solution:-}

To calculate the amount on the sum of 2000 for 3 whole 1/4 years at the rate of 10% compounded annually. Just applying a formula. But note here in the given Question the time is given in fractional form so we have to apply a fractional formula to calculate the amount:]

\sf\large\underline{Formula\:used:-}

\tt{\implies A=P\bigg(1+\dfrac{r}{100}\bigg)^n\bigg(1+\dfrac{rF}{100}\bigg)}

Here, n=3 year , F=1/4

\tt{\implies A=2000\bigg(1+\dfrac{10}{100}\bigg)^3\bigg(1+\dfrac{10*1}{100*4}\bigg)}

\tt{\implies A=2000\bigg(1+\dfrac{1}{10}\bigg)^3\bigg(1+\dfrac{1}{40}\bigg)}

\tt{\implies A=2000\bigg(\dfrac{10+1}{10}\bigg)^3\bigg(\dfrac{40+1}{40}\bigg)}

\tt{\implies A=2000\bigg(\dfrac{11}{10}\bigg)^3\bigg(\dfrac{41}{40}\bigg)}

\tt{\implies A=2000*(1.1)^3*\dfrac{41}{40}}

\tt{\implies A=2000*1.331*\dfrac{41}{40}}

\tt{\implies A=2662*\dfrac{41}{40}}

\tt{\implies A=66.55*41}

\tt{\implies A=Rs.2728.55}

\sf\large{Hence,}

\sf{\implies Amount\:_{(received\:by\:Heena)}=Rs.2728.55}

Answered by Amrit111Raj82
12

Mark as brainliest..............

Attachments:
Similar questions