Math, asked by aryan021212, 16 hours ago

Integrate the function

\int \:  \frac{dx}{ {(x - 1)}^{ \frac{3}{4}} {(x + 2)}^{ \frac{5}{4} } }

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given integral is

 \rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{{\bigg(x - 1 \bigg) }^{\dfrac{3}{4}}{\bigg(x + 2\bigg) }^{\dfrac{5}{4} }}

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{{\bigg(x - 1 \bigg) }^{\dfrac{3}{4}}{\bigg(x + 2\bigg) }^{\dfrac{5}{4}} \times {\bigg(x + 2 \bigg) }^{\dfrac{3}{4}} \times \dfrac{1}{{\bigg(x + 2\bigg) }^{\dfrac{3}{4} }} }   \\

can be further rewritten as

 \rm \:  =  \: \dfrac{dx}{ {(x + 2)}^{2} {\bigg[\dfrac{x - 1}{x + 2} \bigg]}^{ \dfrac{3}{4} } }  \\

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

 \red{\rm :\longmapsto\:\dfrac{x - 1}{x + 2} = y}

 \red{\rm :\longmapsto\:\dfrac{x + 2 - 3}{x + 2} = y}

 \red{\rm :\longmapsto\:1 - \dfrac{3}{x + 2} = y}

 \red{\rm :\longmapsto\:\dfrac{3}{(x + 2)^{2} }dx = dy}

So, on substituting these values in above integral, we have

 \rm \:  =  \: \dfrac{1}{3} \displaystyle\int\rm  \frac{dy}{{\bigg(y\bigg) }^{\dfrac{3}{4} }}

 \rm \:  =  \: \dfrac{1}{3} \displaystyle\int\rm {\bigg(y\bigg) }^{\dfrac{ - 3}{4} } \: dy

 \rm \:  =  \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{ - \dfrac{3}{4} + 1}}{ - \dfrac{3}{4}  + 1} + c  \\

 \rm \:  =  \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{\dfrac{ - 3 + 4}{4}}}{\dfrac{ - 3 + 4}{4}} + c  \\

 \rm \:  =  \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{\dfrac{1}{4}}}{\dfrac{1}{4}} + c  \\

 \rm \:  =  \: \dfrac{4}{3}{\bigg( \dfrac{x - 1}{x + 2} \bigg) }^{\dfrac{1}{4} } + c  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \dfrac{d}{dx} \frac{1}{ {x}^{n}}  =  \frac{ - n}{ {x}^{n + 1} } \: }} \\

\boxed{\tt{ \displaystyle\int\rm  {x}^{n}dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \frac{dx}{{\bigg(x - 1 \bigg) }^{\dfrac{3}{4}}{\bigg(x + 2\bigg) }^{\dfrac{5}{4} }} \\  \\ can \:  \:  \:  be \:  \:  \:  rewritten \:  \:  \:  as \\  \\ \begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{dx}{{\bigg(x - 1 \bigg) }^{\dfrac{3}{4}}{\bigg(x + 2\bigg) }^{\dfrac{5}{4}} \times {\bigg(x + 2 \bigg) }^{\dfrac{3}{4}} \times \dfrac{1}{{\bigg(x + 2\bigg) }^{\dfrac{3}{4} }} } \\ \end{gathered}

can be further rewritten as

\begin{gathered} \rm \: = \: \dfrac{dx}{ {(x + 2)}^{2} {\bigg[\dfrac{x - 1}{x + 2} \bigg]}^{ \dfrac{3}{4} } } \\ \end{gathered}

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:\dfrac{x - 1}{x + 2} = y} \\  \\ \red{\rm :\longmapsto\:\dfrac{x + 2 - 3}{x + 2} = y} \\  \\ \red{\rm :\longmapsto\:1 - \dfrac{3}{x + 2} = y}  \\  \\ \red{\rm :\longmapsto\:\dfrac{3}{(x + 2)^{2} }dx = dy}

So, on substituting these values in above integral, we have

\rm \: = \: \dfrac{1}{3} \displaystyle\int\rm \frac{dy}{{\bigg(y\bigg) }^{\dfrac{3}{4} }}</p><p> \\  \\ \begin{gathered} \rm \: = \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{ - \dfrac{3}{4} + 1}}{ - \dfrac{3}{4} + 1} + c \\ \end{gathered}  \\  \\ \begin{gathered} \rm \: = \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{\dfrac{ - 3 + 4}{4}}}{\dfrac{ - 3 + 4}{4}} + c \\ \end{gathered}  \\  \\ \begin{gathered} \rm \: = \: \dfrac{1}{3}\dfrac{{\bigg(y\bigg) }^{\dfrac{1}{4}}}{\dfrac{1}{4}} + c \\ \end{gathered} \\  \\ \begin{gathered} \rm \: = \: \dfrac{4}{3}{\bigg( \dfrac{x - 1}{x + 2} \bigg) }^{\dfrac{1}{4} } + c \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx} \frac{1}{ {x}^{n}} = \frac{ - n}{ {x}^{n + 1} } \: }} \\ \end{gathered} \\  \\  \\ \begin{gathered}\boxed{\tt{ \displaystyle\int\rm {x}^{n}dx \: = \: \frac{ {x}^{n + 1} }{n + 1} + c \: }} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions